Linear Algebra (Math 2890) Review Problems for Final Exam

1. Let
$$\begin{bmatrix} -1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3 \end{bmatrix}$$
.

- (a) What is the column space of A?
- (b) Describe the subspace $col(A)^{\perp}$ and find an basis for $col(A)^{\perp}$.
- (c) Use Gram-Schmidt process to find an orthogonal basis for the column of the matrix A.
- (d) Find an orthonormal basis for the column of the matrix A.

(e) Find the orthogonal projection of
$$y = \begin{bmatrix} -1 \\ 8 \\ -6 \\ 4 \end{bmatrix}$$
 onto the column

space of A and write $y = \hat{y} + z$ where $\hat{y} \in col(A)$ and $z \in col(A)^{\perp}$. Also find the shortest distance from y to Col(A).

2. (a) Show that the set of vectors

$$B = \left\{ u_1 = \left(-\frac{3}{5}, \frac{4}{5}, 0 \right), \ u_2 = \left(\frac{4}{5}, \frac{3}{5}, 0 \right), \ u_3 = (0, 0, 1) \right\}$$

is an **orthonormal basis** of \mathbb{R}^3 .

(b) Find the coordinates of the vector (1, -1, 2) with respect to the basis in (a).

3. Let
$$A = \begin{bmatrix} 1 & 3 & 4 & 0 \\ -3 & -6 & -7 & 2 \\ 3 & 3 & 0 & -4 \\ -5 & -3 & 2 & 9 \end{bmatrix}$$

(a) Find an LU decomposition of A.

- (b) Use *LU* factorization to solve $Ax = \begin{bmatrix} 1\\ -2\\ -1\\ 2 \end{bmatrix}$
- (c) Find the inverse matrix of A if possible.

(d) Use the inverse of A to solve
$$Ax = \begin{bmatrix} 1 \\ -2 \\ -1 \\ 2 \end{bmatrix}$$
.

4. Let A be the matrix

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}.$$

- (a) Orthogonally diagonalizes the matrix A, giving an orthogonal matrix P and a diagonal matrix D such that $A = PDP^t$
- (b) Find A^{10} and e^A .
- 5. Classify the quadratic forms for the following quadratic forms. Make a change of variable x = Py, that transforms the quadratic form into one with no cross term. Also write the new quadratic form.
 - (a) $9x_1^2 8x_1x_2 + 3x_2^2$.
 - (b) $-5x_1^2 + 4x_1x_2 2x_2^2$.
 - (c) $8x_1^2 + 6x_1x_2$.

6. Find an SVD of $A = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$.

7. Let
$$A = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 \\ 2 & -6 & 9 & -1 & 8 \\ 2 & -6 & 9 & -1 & 9 \\ -1 & 3 & -4 & 2 & -5 \end{bmatrix}$$
.

- (a) Find a basis for the column space of A
- (b) Find a basis for the nullspace of A

(c) Find the rank of the matrix A(d) Find the dimension of the nullspace of A. (d) Find the uniteration A? (e) Is $\begin{bmatrix} 1\\4\\3\\1 \end{bmatrix}$ in the range of A? (e) Does $Ax = \begin{bmatrix} 0\\3\\2\\0 \end{bmatrix}$ have any solution? Find a solution if it's solvable.

8. Determine if the columns of the matrix form a linearly independent set. Justify your answer.

0	1	3	0		$\left\lceil -4 \right\rceil$	-3	0		$\left\lceil -4 \right\rceil$	-3	1	5	1	
0	0	1	4		0	-1	4		2	-1	4	-1	2	
0	0	0	1	,	1	0	3	,	1	2	3	6	-3	•
2	0	0	0		5	4	6		5	4	6	-3	2	

9. Circle True or False:

 \mathbf{T}

or False: The matrix $\begin{bmatrix} 3 & 5 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 4 \end{bmatrix}$ is diagonalizable \mathbf{F}

- The matrix $\begin{bmatrix} 3 & 5 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 4 \end{bmatrix}$ is orthogonally diagonalizable \mathbf{F} \mathbf{T}
- \mathbf{T} \mathbf{F} An orthogonal $n \times n$ matrix times an orthogonal $n \times n$ matrix is orthogonal \mathbf{T}
 - \mathbf{F} A 5×5 orthogonally diagonalizable matrix has an orthonormal set of 5 eigenvectors
- \mathbf{T} \mathbf{F} A square matrix that has the zero eigenvalue is not invertible
- \mathbf{T} \mathbf{F} A subspace of dimension 3 can not have a spanning set of 4 vectors
- \mathbf{T} \mathbf{F} A subspace of dimension 3 can not have a linearly independent set of 4 vectors

- $\begin{array}{ccc} {\bf T} & {\bf F} & \mbox{The characteristic polynomial of a 2×2 matrix is always a polynomial of degree 2 } \end{array}$
- **T F** If the characteristic polynomial of a matrix is $(\lambda 4)^3(\lambda 1)^2$ and the eigenspace associated to $\lambda = 4$ has dimension 3, than the matrix is diagonalizable
- **T F** If the characteristic polynomial of a matrix is $(\lambda 4)^3(\lambda 1)\lambda 2)$ and the eigenspace associated to $\lambda = 4$ has dimension 3, than the matrix is diagonalizable
- $\mathbf{T} = \mathbf{F}$ The columns of an orthogonal matrix are orthonormal vectors
- **T F** AB = BA for any $n \times n$ matrices A and B
- **T F** det(A + B) = det A + det B for any $n \times n$ matrices A and B
- **T F** Any upper triangular matrix is always diagonalizable.