## Linear Algebra (Math 2890) Review Problems for Final Exam

1. Let $\left[\begin{array}{ccc}-1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3\end{array}\right]$.
(a) What is the column space of $A$ ?
(b) Describe the subspace $\operatorname{col}(A)^{\perp}$ and find an basis for $\operatorname{col}(A)^{\perp}$.
(c) Use Gram-Schmidt process to find an orthogonal basis for the column of the matrix $A$.
(d) Find an orthonormal basis for the column of the matrix $A$.
(e) Find the orthogonal projection of $y=\left[\begin{array}{c}-1 \\ 8 \\ -6 \\ 4\end{array}\right]$ onto the column space of $A$ and write $y=\widehat{y}+z$ where $\widehat{y} \in \operatorname{col}(A)$ and $z \in \operatorname{col}(A)^{\perp}$. Also find the shortest distance from $y$ to $\operatorname{Col}(A)$.
2. (a) Show that the set of vectors

$$
B=\left\{u_{1}=\left(-\frac{3}{5}, \frac{4}{5}, 0\right), u_{2}=\left(\frac{4}{5}, \frac{3}{5}, 0\right), u_{3}=(0,0,1)\right\}
$$

is an orthonormal basis of $\mathbb{R}^{3}$.
(b) Find the coordinates of the vector $(1,-1,2)$ with respect to the basis in (a).
3. Let $A=\left[\begin{array}{cccc}1 & 3 & 4 & 0 \\ -3 & -6 & -7 & 2 \\ 3 & 3 & 0 & -4 \\ -5 & -3 & 2 & 9\end{array}\right]$
(a) Find an $L U$ decomposition of $A$.
(b) Use $L U$ factorization to solve $A x=\left[\begin{array}{c}1 \\ -2 \\ -1 \\ 2\end{array}\right]$
(c) Find the inverse matrix of $A$ if possible.
(d) Use the inverse of $A$ to solve $A x=\left[\begin{array}{c}1 \\ -2 \\ -1 \\ 2\end{array}\right]$.
4. Let $A$ be the matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

(a) Orthogonally diagonalizes the matrix $A$, giving an orthogonal matrix $P$ and a diagonal matrix $D$ such that $A=P D P^{t}$
(b) Find $A^{10}$ and $e^{A}$.
5. Classify the quadratic forms for the following quadratic forms. Make a change of variable $x=P y$, that transforms the quadratic form into one with no cross term. Also write the new quadratic form.
(a) $9 x_{1}^{2}-8 x_{1} x_{2}+3 x_{2}^{2}$.
(b) $-5 x_{1}^{2}+4 x_{1} x_{2}-2 x_{2}^{2}$.
(c) $8 x_{1}^{2}+6 x_{1} x_{2}$.
6. Find an SVD of $A=\left[\begin{array}{ll}2 & 3 \\ 0 & 2\end{array}\right]$.
7. Let $A=\left[\begin{array}{ccccc}1 & -3 & 4 & -2 & 5 \\ 2 & -6 & 9 & -1 & 8 \\ 2 & -6 & 9 & -1 & 9 \\ -1 & 3 & -4 & 2 & -5\end{array}\right]$.
(a) Find a basis for the column space of $A$
(b) Find a basis for the nullspace of $A$
(c) Find the rank of the matrix $A$
(d) Find the dimension of the nullspace of $A$.
(e) Is $\left[\begin{array}{l}1 \\ 4 \\ 3 \\ 1\end{array}\right]$ in the range of $A$ ?
(e) Does $A x=\left[\begin{array}{l}0 \\ 3 \\ 2 \\ 0\end{array}\right]$ have any solution? Find a solution if it's solvable.
8. Determine if the columns of the matrix form a linearly independent set. Justify your answer.
$\left[\begin{array}{llll}0 & 1 & 3 & 0 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}-4 & -3 & 0 \\ 0 & -1 & 4 \\ 1 & 0 & 3 \\ 5 & 4 & 6\end{array}\right],\left[\begin{array}{ccccc}-4 & -3 & 1 & 5 & 1 \\ 2 & -1 & 4 & -1 & 2 \\ 1 & 2 & 3 & 6 & -3 \\ 5 & 4 & 6 & -3 & 2\end{array}\right]$.
9. Circle True or False:
$\mathbf{T} \quad \mathbf{F} \quad$ The matrix $\left[\begin{array}{lll}3 & 1 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 4\end{array}\right]$ is diagonalizable
$\mathbf{T} \quad \mathbf{F} \quad$ The matrix $\left[\begin{array}{lll}3 & 5 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 4\end{array}\right]$ is orthogonally diagonalizable
T F An orthogonal $n \times n$ matrix times an orthogonal $n \times n$ matrix is orthogonal
T F A $5 \times 5$ orthogonally diagonalizable matrix has an orthonormal set of 5 eigenvectors

T F A square matrix that has the zero eigenvalue is not invertible
T F A subspace of dimension 3 can not have a spanning set of 4 vectors

T F A subspace of dimension 3 can not have a linearly independent set of 4 vectors

T F The characteristic polynomial of a $2 \times 2$ matrix is always a polynomial of degree 2
$\mathbf{T} \quad \mathbf{F} \quad$ If the characteristic polynomial of a matrix is $(\lambda-4)^{3}(\lambda-1)^{2}$ and the eigenspace associated to $\lambda=4$ has dimension 3 , than the matrix is diagonalizable
$\mathbf{T} \quad \mathbf{F} \quad$ If the characteristic polynomial of a matrix is $\left.(\lambda-4)^{3}(\lambda-1) \lambda-2\right)$ and the eigenspace associated to $\lambda=4$ has dimension 3, than the matrix is diagonalizable

T F The columns of an orthogonal matrix are orthonormal vectors
T $\quad$ F $\quad A B=B A$ for any $n \times n$ matrices $A$ and $B$
T $\quad \mathbf{F} \quad \operatorname{det}(A+B)=\operatorname{det} A+\operatorname{det} B$ for any $n \times n$ matrices $A$ and $B$
T F Any upper triangular matrix is always diagonalizable.

