Linear Algebra (Math 2890) Solution to Final Review Problems

1. Let
$$A = \begin{bmatrix} -1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3 \end{bmatrix}$$
.

- (a) What is the column space of A?
- (b) Describe the subspace $col(A)^{\perp}$ and find an basis for $col(A)^{\perp}$.
- (c) Use Gram-Schmidt process to find an orthogonal basis for the column of the matrix A.
- (d) Find an orthonormal basis for the column of the matrix A.

(e) Find the orthogonal projection of
$$y = \begin{bmatrix} -1 \\ 8 \\ -6 \\ 4 \end{bmatrix}$$
 onto the column

space of A and write $y = \hat{y} + z$ where $\hat{y} \in col(A)$ and $z \in col(A)^{\perp}$. Also find the shortest distance from y to Col(A).

Solution: (a) The column space is the subspace spanned by the $\begin{bmatrix} -1 \end{bmatrix} \begin{bmatrix} 6 \end{bmatrix} \begin{bmatrix} 6 \end{bmatrix}$

.

column vectors. So
$$Col(A) = span\left\{ \begin{bmatrix} -1\\3\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\-8\\-2\\-4 \end{bmatrix}, \begin{bmatrix} 0\\3\\6\\-3 \end{bmatrix} \right\}$$

$$(b) \ col(A)^{\perp} = \{x | x \cdot y = 0 \ for \ all \ y \in col(A)\}$$

$$= \{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \mid \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \cdot \begin{bmatrix} 6 \\ -8 \\ -2 \\ -4 \end{bmatrix} = 0, \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \cdot \begin{bmatrix} 6 \\ 3 \\ 6 \\ -3 \end{bmatrix} = 0 \}$$

$$= \{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \mid -x_1 + 3x_2 + x_3 + x_4 = 0, 6x_1 - 8x_2 - 2x_3 - 4x_4 =$$

$$0, 6x_1 + 3x_2 + 6x_3 - 3x_4 = 0 \}$$

$$Consider \begin{bmatrix} -1 & 3 & 1 & 1 & | & 0 \\ 6 & -8 & -2 & -4 & | & 0 \\ 6 & 3 & 6 & -3 & | & 0 \end{bmatrix} 6r_1 + \widetilde{r_2}, 6r_1 + r_3 \begin{bmatrix} -1 & 3 & 1 & 1 & | & 0 \\ 0 & 10 & 4 & 2 & | & 0 \\ 0 & 21 & 12 & 3 & | & 0 \end{bmatrix}$$

2. (a) Show that the set of vectors

$$B = \left\{ u_1 = \left(-\frac{3}{5}, \frac{4}{5}, 0 \right), \ u_2 = \left(\frac{4}{5}, \frac{3}{5}, 0 \right), \ u_3 = (0, 0, 1) \right\}$$

is an orthonormal basis of \mathbb{R}^3 .

Solution: Compute $u_1 \cdot u_2 = \left(-\frac{3}{5}, \frac{4}{5}, 0\right) \cdot \left(\frac{4}{5}, \frac{3}{5}, 0\right) = \frac{-12}{5} + \frac{12}{5} = 0,$ $u_1 \cdot u_3 = \left(-\frac{3}{5}, \frac{4}{5}, 0\right) \cdot (0, 0, 1) = 0, u_2 \cdot u_3 = \left(\frac{4}{5}, \frac{3}{5}, 0\right) \cdot (0, 0, 1) = 0,$ $u_1 \cdot u_1 = \left(-\frac{3}{5}, \frac{4}{5}, 0\right) \cdot \left(-\frac{3}{5}, \frac{4}{5}, 0\right) = \frac{9}{25} + \frac{16}{25} = 1, u_3 \cdot u_3 = (0, 0, 1) \cdot (0, 0, 1) = 1,$ $u_2 \cdot u_2 = \left(\frac{4}{5}, \frac{3}{5}, 0\right) \cdot \left(\frac{4}{5}, \frac{3}{5}, 0\right) = \frac{16}{25} + \frac{9}{25} = 1$

(b) Find the coordinates of the vector (1, -1, 2) with respect to the basis in (a).

Solution: Let y = (1, -1, 2). So $y = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{y \cdot u_2}{u_2 \cdot u_2} u_2 + \frac{y \cdot u_3}{u_3 \cdot u_3} u_3 = (y \cdot u_1) u_1 + (y \cdot u_2) u_2 + (y \cdot u_3) u_3$. Compute $y \cdot u_1 = (1, -1, 2) \cdot \left(-\frac{3}{5}, \frac{4}{5}, 0\right) = -\frac{3}{5} - \frac{4}{5} = -\frac{7}{5}, \ y \cdot u_2 = (1, -1, 2) \cdot \left(\frac{4}{5}, \frac{3}{5}, 0\right) = \frac{4}{5} - \frac{3}{5} = \frac{1}{5}, \ y \cdot u_3 = (1, -1, 2) \cdot (0, 0, 1) = 2.$

So the coordinate of y with respect to the basis in (a) is $\left(-\frac{7}{5}, \frac{1}{5}, 2\right)$.

3. Let
$$A = \begin{bmatrix} 1 & 3 & 4 & 0 \\ -3 & -6 & -7 & 2 \\ 3 & 3 & 0 & -4 \\ -5 & -3 & 2 & 9 \end{bmatrix}$$

(a) Find an LU decomposition of A. Solution: $A = \begin{bmatrix} 1 & 3 & 4 & 0 \\ -3 & -6 & -7 & 2 \\ 3 & 3 & 0 & -4 \\ -5 & -3 & 2 & 9 \end{bmatrix}$ $3r_1 + r_2, -3r_1 + r_2, 5r_1 + r_4 \begin{vmatrix} 1 & 3 & 4 & 0 \\ 0 & 3 & 5 & 2 \\ 0 & -6 & -12 & -4 \\ 0 & 12 & 22 & 9 \end{vmatrix}$ $2r_2 + \widetilde{r_3, -4r_2} + r_4 \begin{bmatrix} 1 & 3 & 4 & 0 \\ 0 & 3 & 5 & 2 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 2 & 1 \end{bmatrix}$ $\widetilde{r_3 + r_4} \begin{vmatrix} 1 & 0 & 4 & 0 \\ 0 & 3 & 5 & 2 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & -2 & 0 \end{vmatrix}.$ So $U = \begin{bmatrix} 1 & 3 & 4 & 0 \\ 0 & 3 & 5 & 2 \\ 0 & 0 & -2 & 0 \end{bmatrix}$. Consider the matrix $\begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & -2 & 0 \\ -5 & 12 & 2 & 1 \\ divide by 1 & divide by 3 & divide by -2 & divide by 1 \end{bmatrix}.$

We get
$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 1 & 0 & 0 \\ 3 & -2 & 1 & 0 \\ -5 & 4 & -1 & 1 \end{bmatrix}$$
 with $A = LU$
(b) Use *LU* factorization to solve $Ax = \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ 2 \end{bmatrix}$
Solution: $Ax = b \Leftrightarrow L \underbrace{Ux}_{y} = b \Leftrightarrow Ly = b$ and $Ux = y$.
So we have to solve $Ly = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 1 & 0 & 0 \\ -3 & 1 & 0 & 0 \\ -5 & 4 & -1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} \frac{1}{-2} \\ -\frac{1}{2} \end{bmatrix}$ first,
that is
 $y_1 = 1, -3y_1 + y_2 = -2, 3y_1 - 2y_2 + y_3 = -1, -5y_1 + 4y_2 - y_3 + y_4 = 2.$
Thus $y_1 = 1, y_2 = -2 + 3y_1 = -2 + 3 = 1, y_3 = -1 - 3y_1 + 2y_2 = -1 - 3 + 2 = -2$ and $y_4 = 2 + 5y_1 - 4y_2 + y_3 = 2 + 5 - 4 - 2 = 1.$
Now we solve $Ux = y$, i.e $\begin{bmatrix} 1 & 3 & 4 & 0 \\ 0 & 3 & 5 & 2 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -2 \\ 1 \end{bmatrix}$. So
 $x_4 = 1, -2x_3 = -2, 3x_2 + 5x_3 + 2x_4 = 1$ and $x_1 + 3x_2 + 4x_3 = 1$.
Finally, we get $x_4 = 1, x_3 = -2/-2 = 1, x_2 = (1 - 5x_3 - 2x_4)/3 = (1 - 5 - 2)/3 = -2$ and $x_1 = 1 - 3x_2 - 4x_3 = 1 - 3(-2) - 4 = 3.$
So $x = \begin{bmatrix} \frac{3}{-2} \\ 1 \\ 1 \end{bmatrix}$

(c) Find the inverse matrix of A if possible. $\[Gamma] 1 \ 3 \ 4 \ 0 \ | \ 1 \ 0 \ 0 \ 0 \]$

Consider
$$[A|I] = \begin{bmatrix} 1 & 3 & 4 & 0 & | & 1 & 0 & 0 & 0 \\ -3 & -6 & -7 & 2 & | & 0 & 1 & 0 & 0 \\ 3 & 3 & 0 & -4 & | & 0 & 0 & 1 & 0 \\ -5 & -3 & 2 & 9 & | & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{split} &3r_1+r_2, -3r_1+r_3, 5r_1+r_4 \begin{bmatrix} 1 & 3 & 4 & 0 & | & 1 & 0 & 0 & 0 \\ 0 & 3 & 5 & 2 & | & 3 & 1 & 0 & 0 \\ 0 & -6 & -12 & -4 & | & -3 & 0 & 1 & 0 \\ 0 & 12 & 22 & 9 & | & 5 & 0 & 0 & 1 \end{bmatrix} \\ &2r_2+\widetilde{r_3,-4r_2}+r_4 \begin{bmatrix} 1 & 3 & 4 & 0 & | & 1 & 0 & 0 & 0 \\ 0 & 3 & 5 & 2 & | & 3 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 & | & 3 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 & | & -7 & -4 & 0 & 1 \end{bmatrix} \\ &\widetilde{r_3+r_4} \begin{bmatrix} 1 & 3 & 4 & 0 & | & 1 & 0 & 0 & 0 \\ 0 & 3 & 5 & 2 & | & 3 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 & | & 3 & 2 & 1 & 0 \\ 0 & 0 & -2 & 0 & | & 3 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1 & | & -4 & -2 & 1 & 1 \end{bmatrix} \\ &\widetilde{r_5r_3+r_2,-4r_3+r_1} \begin{bmatrix} 1 & 3 & 0 & 0 & | & 7 & 4 & 2 & 0 \\ 0 & 3 & 0 & | & 3^{\frac{7}{2}} & 10 & 1/2 & -2 \\ 0 & 0 & 1 & 0 & | & -3/2 & -1 & -1/2 & 0 \\ 0 & 0 & 0 & 1 & | & -4 & -2 & 1 & 1 \end{bmatrix} \\ &\widetilde{r_6r_2+r_1} \begin{bmatrix} 1 & 3 & 0 & 0 & | & 7 & 4 & 2 & 0 \\ 0 & 1 & 0 & | & 3^{\frac{37}{6}} & 10/3 & 1/6 & -2/3 \\ 0 & 0 & 0 & 1 & | & -4 & -2 & 1 & 1 \end{bmatrix} \\ &\widetilde{r_6r_2+r_1} \begin{bmatrix} 1 & 0 & 0 & | & 3^{\frac{37}{6}} & 10/3 & 1/6 & -2/3 \\ 0 & 1 & 0 & | & -3/2 & -1 & -1/2 & 0 \\ 0 & 0 & 1 & | & -4 & -2 & 1 & 1 \end{bmatrix} . \end{split}$$

So
$$A^{-1} = \begin{bmatrix} -23/2 & -6 & 3/2 & 2\\ \frac{37}{6} & 10/3 & 1/6 & -2/3\\ -3/2 & -1 & -1/2 & 0\\ -4 & -2 & 1 & 1 \end{bmatrix}$$

(d) Use the inverse of A to solve $Ax = \begin{bmatrix} 1\\ -2\\ -1\\ 2 \end{bmatrix}$.

Solution: We get
$$x = A^{-1} \begin{bmatrix} \frac{1}{-2} \\ -1 \\ 2 \end{bmatrix}$$

= $\begin{bmatrix} -23/2 & -6 & 3/2 & 2 \\ \frac{37}{6} & 10/3 & 1/6 & -2/3 \\ -3/2 & -1 & -1/2 & 0 \\ -4 & -2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ 1 \\ 1 \end{bmatrix}.$

4. Let A be the matrix

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}.$$

Suppose the characteristic polynomial of $det(A - \lambda)$ is $(\lambda - 1)^2(\lambda - 4)$.

(a) Orthogonally diagonalizes the matrix A, giving an orthogonal matrix P and a diagonal matrix D such that $A = PDP^t$ Solution: We know that the eigenvalues are 1,1 and 4. $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$

When
$$\lambda = 1, A - (1)I = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

 $x \in Null(A - I)$ if $x_1 + x_2 + x_3 = 0$. So $x_1 = -x_2 - x_3$ and
 $x = \begin{bmatrix} -x_2 - x_3 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$. Thus $\{w_1 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, w_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$ } is a basis for $Null(A - (-1)I)$.

Now we use Gram-Schmidt process to find an orthogonal basis for Null(A-I).

Let
$$v_1 = w_1 = \begin{bmatrix} -1\\ 1\\ 0 \end{bmatrix}$$
 and $v_2 = w_2 - \frac{w_2 \cdot v_1}{v_1 \cdot v_1} v_1$. Compute $w_2 \cdot v_1 = \begin{bmatrix} -1\\ 0\\ 1 \end{bmatrix} \cdot \begin{bmatrix} -1\\ 1\\ 0\\ 1 \end{bmatrix} = 1$ and $v_1 \cdot v_1 = \begin{bmatrix} -1\\ 1\\ 0\\ -1\\ 1 \end{bmatrix} \cdot \begin{bmatrix} -1\\ 1\\ 0\\ -1\\ 0 \end{bmatrix} = 2$.
So $v_2 = \begin{bmatrix} -1\\ 0\\ 1\\ 1\\ -2\\ 1\\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} -\frac{1}{2}\\ -\frac{1}{2}$

So $\{v_1 = \begin{bmatrix} -1\\ 1\\ 0 \end{bmatrix}, v_2 = \begin{bmatrix} -\frac{1}{2}\\ -\frac{1}{2}\\ 1 \end{bmatrix}, v_3 = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \}$ is an orthogonal basis for R^3 which are eigenvectors corresponding to $\lambda = 1, \lambda = 1$ and $\lambda = 4$. Compute $||v_1|| = \sqrt{2}, ||v_2|| = \sqrt{\frac{1}{4} + \frac{1}{4} + 1} = \sqrt{\frac{6}{4}} = \sqrt{\frac{3}{2}}$ and $||v_3|| = \sqrt{3}$. Thus $\{\frac{v_1}{||v_1||} = \begin{bmatrix} \frac{-1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}}\\ 0 \end{bmatrix}, \frac{v_2}{||v_2||} = \begin{bmatrix} -\frac{1}{\sqrt{6}}\\ -\frac{1}{\sqrt{6}}\\ \frac{1}{\sqrt{6}} \end{bmatrix}, \frac{v_3}{||v_3||} = \begin{bmatrix} \frac{1}{\sqrt{3}}\\ \frac{1}{\sqrt{3}}\\ \frac{1}{\sqrt{3}} \end{bmatrix} \}$ is an orthonormal basis for R^3 which are eigenvectors corresponding to $\lambda = 1, \lambda = 1$ and $\lambda = 4$. Finally, we have $A = P \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 4 \end{bmatrix} P^T$ where $P = \begin{bmatrix} v_1 & v_2 & v_3\\ ||v_2|| & ||v_2|| & ||v_3|| \end{bmatrix} = \begin{bmatrix} \frac{-1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}}\\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}}\\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}}\\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix}$. (b) Find A^{10} and e^A . So $A^10 = P \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 4^{10} \end{bmatrix} P^T$ and $e^A = P \begin{bmatrix} e & 0 & 0\\ 0 & e & 0\\ 0 & 0 & e^4 \end{bmatrix} P^T$

- 5. Classify the quadratic forms for the following quadratic forms. Make a change of variable x = Py, that transforms the quadratic form into one with no cross term. Also write the new quadratic form.
 - (a) $9x_1^2 8x_1x_2 + 3x_2^2$ Let $Q(x_1, x_2) = 9x_1^2 - 8x_1x_2 + 3x_2^2 = x^T \begin{bmatrix} 9 & -4 \\ -4 & 3 \end{bmatrix} x$ and $A = \begin{bmatrix} 9 & -4 \\ -4 & 3 \end{bmatrix}$. We want to orthogonally diagonalizes A. Compute $A - \lambda I = \begin{bmatrix} 9-\lambda & -4\\ -4 & 3-\lambda \end{bmatrix}$ and $det(A - \lambda I) = (9 - \lambda)(3 - \lambda) - 16 = \lambda^2 - 12\lambda + 27 - 16 = \lambda^2 - 12\lambda + 11 = (\lambda - 1)(\lambda - 11)$. So $\lambda = 1$ or $\lambda = 11$. Since the eigenvalues of A are all positive, we know that the quadratic form is positive definite. Now we diagonalize A.
 $$\begin{split} \lambda &= 1: \ A - 1 \cdot I = \begin{bmatrix} 9 - 1 & -4 \\ -4 & 3 - 1 \end{bmatrix} = \begin{bmatrix} 8 & -4 \\ -4 & 2 \end{bmatrix} \widetilde{\left[\begin{smallmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix}}. \text{ So } x \in Null(A - 1 \cdot I) \\ \text{iff } 2x_1 - x_2 &= 0. \text{ So } x_2 = 2x_1 \text{ and } x = \begin{bmatrix} x_1 \\ 2x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}. \text{ So } \begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ is an} \end{split}$$
 eigenvector corresponding to eigenvalue $\lambda = 1$. $\lambda = 11: A - 11 \cdot I = \begin{bmatrix} 9-11 & -4 \\ -4 & 3-11 \end{bmatrix} = \begin{bmatrix} -2 & -4 \\ -4 & -8 \end{bmatrix} [\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}. \text{ So } x \in Null(A - 11 \cdot I) \text{ iff } x_1 + 2x_2 = 0. \text{ So } x_1 = -2x_2 \text{ and } x = \begin{bmatrix} -2x_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \end{bmatrix}.$ So $\begin{bmatrix} -2 \\ 1 \end{bmatrix}$ is an eigenvector corresponding to eigenvalue $\lambda = 11.$ Now $\{v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, v_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}\}$ is an orthogonal basis. Compute $||v_1|| = \sqrt{5}$ and $||v_2|| = \sqrt{5}$. Thus $\left\{\frac{v_1}{||v_1||} = \left|\frac{\frac{1}{\sqrt{5}}}{\frac{2}{\sqrt{5}}}\right|, \frac{v_2}{||v_2||} = \left|\frac{\frac{-2}{\sqrt{5}}}{\frac{1}{\sqrt{5}}}\right|\right\}$ is an orthonormal basis of eigenvectors. So we have $A = Q\begin{bmatrix} 1 & 0 \\ 0 & 11 \end{bmatrix} Q^T$ where $Q = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}$. Now $Q(x) = x^T A x = x^T Q \begin{bmatrix} 1 & 0 \\ 0 & 11 \end{bmatrix} Q^T x = y^T \begin{bmatrix} 1 & 0 \\ 0 & 11 \end{bmatrix} y = y_1^1 + 11y_2^2$ if $y = Q^T x$. So $Qy = QQ^T x$, x = Qy and $P = Q = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}$. Note that we have used the fact that $QQ^T = I$. (b) $-5x_1^2 + 4x_1x_2 - 2x_2^2$.
 - (b) $-5x_1^2 + 4x_1x_2 2x_2^2$.

Let $Q(x_1, x_2) = -5x_1^2 + 4x_1x_2 - 2x_2^2 = x^T \begin{bmatrix} -5 & 2\\ 2 & -2 \end{bmatrix} x$ and $A = \begin{bmatrix} -5 & 2\\ 2 & -2 \end{bmatrix}$. We want to orthogonally diagonalizes A. Compute $A - \lambda I = \begin{bmatrix} -5-\lambda & 2\\ 2 & -2-\lambda \end{bmatrix}$ and $det(A - \lambda I) = (-5 - \lambda)(-2 - \lambda) - 4 = \lambda^2 + 7\lambda + 10 - 4 = \lambda^2 + 7\lambda + 6 = (\lambda + 1)(\lambda + 6)$. So $\lambda = -1$ or $\lambda = -6$. Since the eigenvalues of A are all negative, we know that the quadratic form is negative definite. Now we diagonalize A.
$$\begin{split} \lambda &= -1 \colon A - (-1) \cdot I = \begin{bmatrix} -5 - (-1) & 2 \\ 2 & -2 - (-1) \end{bmatrix} = \begin{bmatrix} -4 & 2 \\ 2 & -1 \end{bmatrix} \stackrel{\text{(}}{}_{0 & 0}^{2 - 1} \end{bmatrix}. \text{ So } x \in \\ Null(A - 1 \cdot I) \text{ iff } 2x_1 - x_2 = 0. \text{ So } x_2 = 2x_1 \text{ and } x = \begin{bmatrix} x_1 \\ 2x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}. \\ \text{So } \begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ is an eigenvector corresponding to eigenvalue } \lambda = -1. \end{split}$$

 $\lambda = -6: A - (-6) \cdot I = \begin{bmatrix} -5 - (-6) & 2 \\ 2 & (-2) - (-6) \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}. \text{ So } x \in Null(A - 11 \cdot I) \text{ iff } x_1 + 2x_2 = 0. \text{ So } x_1 = -2x_2 \text{ and } x = \begin{bmatrix} -2x_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \end{bmatrix}. \text{ So } \begin{bmatrix} -2 \\ 1 \end{bmatrix} \text{ is an eigenvector corresponding to eigenvalue} \lambda = -6.$

Now $\{v_1 = \begin{bmatrix} 1\\ 2 \end{bmatrix}, v_2 = \begin{bmatrix} -2\\ 1 \end{bmatrix}\}$ is an orthogonal basis. Compute $||v_1|| = \sqrt{5}$ and $||v_2|| = \sqrt{5}$. Thus $\{\frac{v_1}{||v_1||} = \begin{bmatrix} \frac{1}{\sqrt{5}}\\ \frac{2}{\sqrt{5}} \end{bmatrix}, \frac{v_2}{||v_2||} = \begin{bmatrix} \frac{-2}{\sqrt{5}}\\ \frac{1}{\sqrt{5}} \end{bmatrix}\}$ is an orthonormal basis of eigenvectors. So we have $A = Q\begin{bmatrix} -1 & 0\\ 0 & -6 \end{bmatrix} Q^T$ where $Q = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}}\\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}$. Now $Q(x) = x^T A x = x^T Q \begin{bmatrix} -1 & 0\\ 0 & -6 \end{bmatrix} Q^T x = y^T \begin{bmatrix} 1 & 0\\ 0 & 11 \end{bmatrix} y = -y_1^1 - 6y_2^2$ if $y = Q^T x$. So $Qy = QQ^T x$, x = Qy and $P = Q = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}}\\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}$.

(c) $8x_1^2 + 6x_1x_2$.

Let $Q(x_1, x_2) = 8x_1^2 + 6x_1x_2 = x^T \begin{bmatrix} 8 & 3 \\ 3 & 0 \end{bmatrix} x$ and $A = \begin{bmatrix} 8 & 3 \\ 3 & 0 \end{bmatrix}$. We want to orthogonally diagonalizes A.

Compute $A - \lambda I = \begin{bmatrix} 8-\lambda & 3\\ 3 & 0-\lambda \end{bmatrix}$ and $det(A - \lambda I) = (8 - \lambda) - \lambda - 9 = \lambda^2 - 8\lambda - 9 = (\lambda + 1)(\lambda - 9)$. So $\lambda = -1$ or $\lambda = 8$. Since A has positive and negative eigenvalues, we know that the quadratic form is indefinite.

Now we diagonalize A.

 $\lambda = -1 \ A - (-1) \cdot I = \begin{bmatrix} 8-(-1) & 3\\ 3 & 0-(-1) \end{bmatrix} = \begin{bmatrix} 9 & 3\\ 3 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1\\ 0 & 0 \end{bmatrix}.$ So $x \in Null(A - 1 \cdot I)$ iff $3x_1 + x_2 = 0$. So $x_2 = -3x_1$ and $x = \begin{bmatrix} x_1\\ -3x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1\\ -3 \end{bmatrix}.$ So $\begin{bmatrix} 1\\ -3 \end{bmatrix}$ is an eigenvector corresponding to eigenvalue $\lambda = -1$.

 $\lambda = 9: A - 9 \cdot I = \begin{bmatrix} 8-9 & 3\\ 3 & 0-9 \end{bmatrix} = \begin{bmatrix} -1 & 3\\ 3 & -9 \end{bmatrix} \stackrel{\text{(1-3)}}{[0 & 0]}. \text{ So } x \in Null(A - 9 \cdot I)$ iff $x_1 - 3x_2 = 0$. So $x_1 = 3x_2$ and $x = \begin{bmatrix} 3x_2\\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 3\\ 1 \end{bmatrix}$. So $\begin{bmatrix} 3\\ 1 \end{bmatrix}$ is an eigenvector corresponding to eigenvalue $\lambda = 9$.

Now $\{v_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}, v_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}\}$ is an orthogonal basis. Compute $||v_1|| = \sqrt{10}$ and $||v_2|| = \sqrt{10}$. Thus $\{\frac{v_1}{||v_1||} = \begin{bmatrix} \frac{1}{\sqrt{10}} \\ \frac{-3}{\sqrt{10}} \end{bmatrix}, \frac{v_2}{||v_2||} = \begin{bmatrix} \frac{1}{\sqrt{10}} \\ \frac{-3}{\sqrt{10}} \end{bmatrix}$

$$\begin{bmatrix} \frac{3}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} \end{bmatrix}$$
 is an orthonormal basis of eigenvectors. So we have $A = Q\begin{bmatrix} -1 & 0 \\ 0 & 9 \end{bmatrix} Q^T$ where $Q = \begin{bmatrix} \frac{1}{\sqrt{10}} & \frac{-3}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \end{bmatrix}$.
Now $Q(x) = x^T A x = x^T Q\begin{bmatrix} -1 & 0 \\ 0 & 9 \end{bmatrix} Q^T x = y^T \begin{bmatrix} -1 & 0 \\ 0 & 9 \end{bmatrix} y = -y_1^2 + 9y_2^2$ if $y = Q^T x$. So $Qy = QQ^T x$, $x = Qy$ and $P = Q = \begin{bmatrix} \frac{1}{\sqrt{10}} & \frac{-3}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \end{bmatrix}$.

6. Find an SVD of $A = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$. This problem is not covered. This will not be in the final exam.

7. Let
$$A = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 \\ 2 & -6 & 9 & -1 & 8 \\ 2 & -6 & 9 & -1 & 9 \\ -1 & 3 & -4 & 2 & -5 \end{bmatrix}$$
.
(a) Find a basis for the column space of A
(b) Find a basis for the nullspace of A
(c) Find the rank of the matrix A
(d) Find the dimension of the nullspace of A .
(e) Is $\begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$ in the range of A ?
(e) Does $Ax = \begin{bmatrix} 0 \\ 3 \\ 2 \\ 0 \end{bmatrix}$ have any solution? Find a solution if it's solvable.
Solution: Consider the matrix $\begin{bmatrix} 1 & -3 & 4 & -2 & 5 & | 1 | 0 \\ 2 & -6 & 9 & -1 & 8 & | 4 | 3 \\ 2 & -6 & 9 & -1 & 9 & | 3 | 2 \\ -1 & 3 & -4 & 2 & -5 & | 1 | 0 \end{bmatrix}$
 $-2r_1 + r_2, -2r_1 + r_3, r_1 + r_4$
 $\begin{bmatrix} 1 & -3 & 4 & -2 & 5 & | 1 | 0 \\ 2 & -6 & 9 & -1 & 9 & | 3 | 2 \\ -1 & 3 & -4 & 2 & -5 & | 1 | 0 \end{bmatrix}$
 $-r_2 + r_3$

$$\begin{bmatrix} 1 & -3 & 4 & -2 & 5 & | & 1 & | & 0 \\ 0 & 0 & 1 & 3 & -2 & | & 2 & | & 3 \\ 0 & 0 & 0 & 0 & 1 & | & -1 & | & -1 \\ 0 & 0 & 0 & 0 & 0 & | & 2 & | & 0 \end{bmatrix}$$

$$2r_3 + r_{2,} -5r_3 + r_1$$

$$\begin{bmatrix} 1 & -3 & 4 & -2 & 0 & | & 6 & | & 5 \\ 0 & 0 & 1 & 3 & 0 & | & 0 & | & 1 \\ 0 & 0 & 0 & 0 & 1 & | & -1 & | & -1 \\ 0 & 0 & 0 & 0 & 0 & | & 2 & | & 0 \end{bmatrix}$$

$$-4r_2 + r_1$$

$$\begin{bmatrix} 1 & -3 & 0 & -14 & 0 & | & 6 & | & 1 \\ 0 & 0 & 1 & 3 & 0 & | & 0 & | & 1 \\ 0 & 0 & 0 & 0 & 1 & | & -1 & | & -1 \\ 0 & 0 & 0 & 0 & 0 & | & 2 & | & 0 \end{bmatrix}$$

So the first, third and fifth vector forms a basis for Col(A), i.e {
$$\begin{cases} 1 & 4 & 5 \\ 2 & 9 & 8 \\ 2 & 9 & 9 \\ -1 & -4 & -5 \end{cases}$$

is a basis for Col(A). The rank of A is 3 and the dimension of the null space is 5 - 3 = 2. $x \in Null(A)$ if $x_1 - 3x_2 - 14x_4 = 0$, $x_3 + 3x_4 = 0$ and $x_5 = 0$. So $x = \begin{bmatrix} 3x_2 + 14x_4 \\ x_2 \\ -x_4 \\ x_4 \\ 0 \end{bmatrix} = x_2 \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 14 \\ 0 \\ -1 \\ 1 \\ 0 \end{bmatrix}$. Thus $\{ \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 14 \\ 0 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ is a basis

 $\begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$ for NULL(A).

From the result of row reduction, we can see that
$$Ax = \begin{bmatrix} 1 \\ 4 \\ 3 \\ 1 \end{bmatrix}$$
 is incon-

sistent (not solvable) and
$$\begin{bmatrix} 1\\4\\3\\1 \end{bmatrix}$$
 is not in the range of A .
From the result of row reduction, we can see that $Ax = \begin{bmatrix} 0\\3\\2\\0 \end{bmatrix}$ is solvable.

 Determine if the columns of the matrix form a linearly independent set. Justify your answer.

		v												
ΓO	1	3	0		-4	-3	0		$\left\lceil -4 \right\rceil$	-3	1	5	1]	
0	0	1	4		0	-1	4		2	-1	4	-1	2	
0	0	0	1	,	1	0	3	,	1	2	3	6	-3	•
$\lfloor 2$	0	0	0		5	4	6		5	4	6	$5 \\ -1 \\ 6 \\ -3$	2	
Solı	utic	on:												

[)	1	3	0]		[2	0	0	0	
()	0	1	4 1	move the last row to the first row	0	1	3	0	
()	0	0	1		0	0	1	4	
	2	0	0	0		0	0	0	1	

This matrix has four pivot vectors. So the columns of the matrix form a linearly independent set.

$$\begin{bmatrix} -4 & -3 & 0 \\ 0 & -1 & 4 \\ 1 & 0 & 3 \\ 5 & 4 & 6 \end{bmatrix} \quad interchange \ \widetilde{first} \ and \ third \ row \begin{bmatrix} 1 & 0 & 3 \\ 0 & -1 & 4 \\ -4 & -3 & 0 \\ 5 & 4 & 6 \end{bmatrix}$$

$$r_{3} + 4\widetilde{r_{1}, r_{4}} + (-5)r_{1} \begin{bmatrix} 1 & 0 & 3 \\ 0 & -1 & 4 \\ 0 & -3 & 12 \\ 0 & 4 & -9 \end{bmatrix} \qquad (-1)r_{2} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -4 \\ 0 & -3 & 12 \\ 0 & 4 & -9 \end{bmatrix}$$

$$r_{3} + 3\widetilde{r_{2}, r_{4}} + (-4)r_{2} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -4 \\ 0 & 0 & 0 \\ 0 & 0 & 7 \end{bmatrix} \quad interchange \ 3rd \ and \ 4th \ row, \frac{1}{7}r_{4} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

This matrix has three pivot vectors. So the columns of the matrix form a linearly independent set.

The column vectors of

$$\begin{bmatrix} -4 & -3 & 1 & 5 & 1 \\ 2 & -1 & 4 & -1 & 2 \\ 1 & 2 & 3 & 6 & -3 \\ 5 & 4 & 6 & -3 & 2 \end{bmatrix}$$

form a dependent set since we have five column vectors in \mathbb{R}^4 .

9. Circle True or False:

- **T F** The matrix $\begin{bmatrix} 3 & 5 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 4 \end{bmatrix}$ is diagonalizable
- **T** Because $\begin{bmatrix} 3 & 5 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 4 \end{bmatrix}$ has three distinct eigenvalues.
- **T F** The matrix $\begin{bmatrix} 3 & 5 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 4 \end{bmatrix}$ is orthogonally diagonalizable
- FBecause $\begin{bmatrix} 3 & 5 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 4 \end{bmatrix}$ is not symmetric. Recall that a matrixis orthogonally diagonalizable if and only if it's symmetric.
- **T F** An orthogonal $n \times n$ matrix times an orthogonal $n \times n$ matrix is orthogonal

T Suppose A and B are orthogonal. Then
$$AA^T = A^T A = I$$
,

$$BB^T = B^T B = I, (AB) \cdot (AB)^T = ABB^T A^T = AIA^T = AA^T = I.$$

Similarly, we have $(AB)^T AB = B^T A^T AB = I$. Not that we have used the fact that $(AB)^T = B^T A^T$.

- $\begin{array}{ccc} {\bf T} & {\bf F} & {\bf A} \ 5 \times 5 \ {\rm orthogonally \ diagonalizable \ matrix \ has \ an \ orthonormal \ set \ of \ 5 \ eigenvectors \end{array} }$
- **T** A is orthogonally diagonalizable if $A = PDP^{T}$. Recall that the column vectors of P are eigenvectors and it is an orthornormal basis.
- $\mathbf{T} = \mathbf{F}$ A square matrix that has the zero eigenvalue is not invertible
- **T** A matrix A has the zero eigenvalue if there exists a nonzero vector x such that Ax = 0x = 0. So Ax = 0 has nonzero solution and A is not invertible.
- **T F** A subspace of dimension 3 can not have a spanning set of 4 vectors
- **F** Let $S = Span\{\begin{bmatrix} 1\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\1\\0\end{bmatrix}, \begin{bmatrix} 0\\0\\1\end{bmatrix}, \begin{bmatrix} 1\\0\\1\end{bmatrix}\}$ Then dim(S) = 3 and

it is spanned by 4 vectors.

- $\begin{array}{ccc} {\bf T} & {\bf F} & \mbox{A subspace of dimension 3 can not have a linearly independent set of} \\ & 4 \ {\rm vectors} \end{array}$
- **T** A subspace of dimension 3 have at most three linearly independent set of

vectors

- $\begin{array}{ccc} {\bf T} & {\bf F} & \mbox{The characteristic polynomial of a 2×2 matrix is always a polynomial of degree 2 } \end{array}$
- **T** The characteristic polynomial of a $n \times n$ matrix is always a polynomial of degree n.
- **T F** If the characteristic polynomial of a matrix is $(\lambda 4)^3(\lambda 1)^2$ and the eigenspace associated to $\lambda = 4$ has dimension 3, than the matrix is diagonalizable
- **F** Because the eigenspace associated to $\lambda = 4$ has dimension 3 and the

eigenspace associated to $\lambda = 1$ could have dimension 1, then we may not

have five independent eigenvectors. So the matrix is not necessarily

diagonizable.

- **T F** If the characteristic polynomial of a matrix is $(\lambda 4)^3(\lambda 1)\lambda 2)$ and the eigenspace associated to $\lambda = 4$ has dimension 3, than the matrix is diagonalizable
- **T** Because the eigenspace associated to $\lambda = 4$ has dimension 3, the eigenspace

associated to $\lambda = 1$ have dimension 1 and the eigenspace associated

to $\lambda = 2$ have dimension 1, then we

may not have five independent eigenvectors. So the matrix is diagonizable.

- $\mathbf{T} = \mathbf{F}$ The columns of an orthogonal matrix are orthonormal vectors
- **T** This is true by the definition of an orthogonal matrix.

- **T F** AB = BA for any $n \times n$ matrices A and B
- **F** The matrix multiplication is not necessarily commutative.
- **T F** det(A+B) = det A + det B for any $n \times n$ matrices A and B

F This is false. For example, $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. Then $A + B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$,

det(A) = det(B) = 0 and det(A + B) = det(I) = 1.

T F Any upper triangular matrix is always diagonalizable.

F It may not have enough eigenvectors. For example, $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ is upper triangular matrix. But it has only one eigenvector. So it is not diagonizable.