Linear Algebra (Math 2890) Practice Problems 1

1. (a) Solve the following system of equations:

$\begin{bmatrix} 2 \end{bmatrix}$	-1	0	0]	$\begin{bmatrix} x_1 \end{bmatrix}$	[1]
-1	2	-1	0	x_2	0
0	-1	2	-1	$ x_3 =$	0
0	0	-1	2	x_4	6

(b) Explain your answer in (a) in terms of the column vectors of the corresponding matrix.

2. Let
$$M = \begin{bmatrix} 1 & 3 & -4 & 7 \\ 2 & 6 & 5 & 1 \\ 3 & 9 & 4 & 5 \end{bmatrix}$$
. Describe all the solutions of $M\vec{x} = 0$

3. Consider a linear system whose augmented matrix is of the form

- (a) For what values of a will the system have a unique solution? What is the solution?(your answer may involve a and b)
- (b) For what values of a and b will the system have infinitely many solutions?
- (c) For what values of a and b will the system be inconsistent?
- $4. \ Let$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

Find AB, B^T and $B^T A^T$.

5. Determine if the columns of the matrix form a linearly independent set. Justify your answer.

[0	1	3	0		-4	-3	0		$\left[-4\right]$	-3	1	5	1	
0	0	1	4		0	-1	4		2	-1	4	-1	2	
0	0	0	1	,	1	0	3	,	1	2	3	6	-3	•
$\lfloor 2$	0	0	0		5	4	6		5	4	6	-3	2	

6. Determine if the following matrices are invertible. $M = \begin{bmatrix} 0 & 1 & 0 & t \\ -1 & 0 & t & 0 \\ 0 & -t & 0 & 1 \\ -t & 0 & -1 & 0 \end{bmatrix}, A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$ 7. Let $A = \begin{bmatrix} 3 & 7 & -3 \\ 3 & 8 & -1 \\ -6 & -14 & 7 \end{bmatrix}.$ (a) Compute A^{-1} . (b) Is $b = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ lies in the span of the column vectors of A? 8. $M = \begin{bmatrix} 1 & 1 & 2 \\ 1 & a + 1 & 3 \\ 1 & a & a + 1 \end{bmatrix}.$ (a) Describe the values of a so that M is invertible.

(b) Describe the values of a so that the column vectors of M are linear independent.

9. Let
$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ and $e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Suppose $T : R^3 \mapsto R^2$ is a linear transformation such that $T(e_1 + e_2) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $T(e_1 - e_2) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and $T(e_1 + e_2 + e_3) = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$. What is $T(\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix})$?