Linear Algebra (Math 2890) Practice Problems 1

1. (a) Solve the following system of equations:

$$
\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
6
\end{array}\right]
$$

(b) Explain your answer in (a) in terms of the column vectors of the corresponding matrix.
2. Let $M=\left[\begin{array}{cccc}1 & 3 & -4 & 7 \\ 2 & 6 & 5 & 1 \\ 3 & 9 & 4 & 5\end{array}\right]$. Describe all the solutions of $M \vec{x}=0$
3. Consider a linear system whose augmented matrix is of the form

$$
\left[\begin{array}{lll|l}
1 & 1 & 0 & 2 \\
1 & 2 & 0 & 1 \\
3 & 5 & a & b
\end{array}\right]
$$

(a) For what values of a will the system have a unique solution? What is the solution? (your answer may involve a and b)
(b) For what values of a and b will the system have infinitely many solutions?
(c) For what values of a and b will the system be inconsistent?
4. Let

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1 \\
3 & 4 & 1 & 2 \\
4 & 1 & 2 & 3
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & 1 & -1 \\
1 & -1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Find $A B, B^{T}$ and $B^{T} A^{T}$.
5. Determine if the columns of the matrix form a linearly independent set. Justify your answer.

$$
\left[\begin{array}{llll}
0 & 1 & 3 & 0 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 1 \\
2 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
-4 & -3 & 0 \\
0 & -1 & 4 \\
1 & 0 & 3 \\
5 & 4 & 6
\end{array}\right],\left[\begin{array}{ccccc}
-4 & -3 & 1 & 5 & 1 \\
2 & -1 & 4 & -1 & 2 \\
1 & 2 & 3 & 6 & -3 \\
5 & 4 & 6 & -3 & 2
\end{array}\right] .
$$

6. Determine if the following matrices are invertible.
$M=\left[\begin{array}{cccc}0 & 1 & 0 & t \\ -1 & 0 & t & 0 \\ 0 & -t & 0 & 1 \\ -t & 0 & -1 & 0\end{array}\right], A=\left[\begin{array}{cccc}1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right], B=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0\end{array}\right]$.
7. Let $A=\left[\begin{array}{ccc}3 & 7 & -3 \\ 3 & 8 & -1 \\ -6 & -14 & 7\end{array}\right]$.
(a) Compute A^{-1}.
(b) Is $b=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ lies in the span of the column vectors of A ?
8. $M=\left[\begin{array}{ccc}1 & 1 & 2 \\ 1 & a+1 & 3 \\ 1 & a & a+1\end{array}\right]$.
(a) Describe the values of a so that M is invertible.
(b) Describe the values of a so that the column vectors of M are linear independent.
9. Let $e_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], e_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ and $e_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Suppose $T: R^{3} \mapsto R^{2}$ is a linear transformation such that $T\left(e_{1}+e_{2}\right)=\left[\begin{array}{c}1 \\ -1\end{array}\right], T\left(e_{1}-e_{2}\right)=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ and $T\left(e_{1}+e_{2}+e_{3}\right)=\left[\begin{array}{c}1 \\ -2\end{array}\right]$. What is $T\left(\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right)$?
