Solution to Linear Algebra (Math 2890) Review Problems II

1. (a) Show that the matrix $A=\left[\begin{array}{cc}I & 0 \\ B & I\end{array}\right]$ is invertible and find its inverse.
(b) Use previous result to find the inverse of $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 3 & 1 & 0 \\ 1 & 2 & 0 & 1\end{array}\right]$.

Solution: (a) Let $C=\left[\begin{array}{cc}X & Y \\ Z & W\end{array}\right]$. Then C is the inverse of A if $A C=I$. So we have $\left[\begin{array}{cc}X & Y \\ Z & W\end{array}\right]\left[\begin{array}{cc}I & 0 \\ B & I\end{array}\right]=\left[\begin{array}{cc}I & 0 \\ 0 & I\end{array}\right]$
$\Longleftrightarrow\left[\begin{array}{cc}X+B Y & Y \\ Z+B W & W\end{array}\right]=\left[\begin{array}{cc}I & 0 \\ 0 & I\end{array}\right] \Longleftrightarrow\left[\begin{array}{ll}X+B Y & Y \\ Z+B W & W\end{array}\right]=\left[\begin{array}{ll}I & 0 \\ 0 & I\end{array}\right]$
$\Longleftrightarrow X+B Y=I, Y=0, Z+B W=0$
and $W=I$
$\Longleftrightarrow Y=0, W=I X=I-B Y=I-B \cdot 0=I$
and $Z=-B W=-B \cdot I=-B$.
Hence $A^{-1}=\left[\begin{array}{cc}I & 0 \\ -B & I\end{array}\right]$.
(b) From part (a), we have $\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & -3 & 1 & 0 \\ -1 & -2 & 0 & 1\end{array}\right]$.
2. (a) Let $A=\left[\begin{array}{ccc}1 & 0 & 3 \\ 1 & 2 & 8 \\ 2 & 6 & 23\end{array}\right]$. Find an LU factorization for A.

Solution: $A=\left[\begin{array}{ccc}1 & 0 & 3 \\ 1 & 2 & 8 \\ 2 & 6 & 23\end{array}\right]-r_{1}+\widetilde{r_{2},-2} r_{1}+r_{3}\left[\begin{array}{ccc}1 & 0 & 3 \\ 0 & 2 & 5 \\ 0 & 6 & 17\end{array}\right]$
$\widetilde{3 r_{1}+r_{3}}\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 2 & 5 \\ 0 & 0 & 2\end{array}\right]$.
Consider the matrix $\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 2 & 0 \\ \underbrace{2}_{\text {divide by } 1} & \underbrace{}_{\text {divide by } 2} \\ \underbrace{}_{\text {divide by } 2}\end{array}\right]$. We get

$$
\begin{aligned}
L & =\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
2 & 3 & 1
\end{array}\right] . \text { Therefore } A=L U \text { where } L=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
2 & 3 & 1
\end{array}\right] \text { and } \\
U & =\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 2 & 5 \\
0 & 0 & 2
\end{array}\right]
\end{aligned}
$$

(b) Use $L U$ decomposition to find the solution of $A x=\left[\begin{array}{l}2 \\ 1 \\ 5\end{array}\right]$. Solution: We have to solve $L y=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 3 & 1\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$ and $U x=\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 2 & 5 \\ 0 & 0 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=y$.
First, we solve $\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 3 & 1\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$
$\Longleftrightarrow y_{1}=2, y_{1}+y_{2}=1$ and $2 y_{1}+3 y_{2}+y_{3}=3$
$\Longleftrightarrow y_{1}=2, y_{2}=1-y_{1}=1-2=-1$ and $y_{3}=3-2 y_{1}-3 y_{2}=$ $3-2 \cdot 2-3 \cdot(-1)=3-4+3=2$.
So $y=\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right]$.
Now we solve $\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 2 & 5 \\ 0 & 0 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=y=\left[\begin{array}{c}2 \\ -1 \\ 2\end{array}\right]$
$\Longleftrightarrow x_{1}+3 x_{3}=2,2 x_{2}+5 x_{3}=-1$ and $2 x_{3}=2$
$\Longleftrightarrow x_{3}=1, x_{2}=\frac{-1-5 x_{3}}{2}=-3$ and $x_{1}=2-3 x_{3}=2-3 \cdot 1=-1$
So $x=\left[\begin{array}{c}-1 \\ -3 \\ 1\end{array}\right]$.
3. Find all values of a and b so that the subspace of \mathbb{R}^{4} spanned by
$\left\{\left[\begin{array}{c}0 \\ 1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}b \\ 1 \\ -a \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ 2 \\ 0 \\ 0\end{array}\right]\right\}$ is two-dimensional.
Solution: Consider the matrix $A=\left[\begin{array}{ccc}0 & b & -2 \\ 1 & 1 & 2 \\ 0 & a & -1 \\ -1 & 1 & 0\end{array}\right]$
interchange first row and second row $\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & b & -2 \\ 0 & a & -1 \\ -1 & 1 & 0\end{array}\right]$
$\widetilde{r_{1}+r_{4}}\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & b & -2 \\ 0 & a & -1 \\ 0 & 2 & 2\end{array}\right]$
interchange second row and forth row $\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & 2 & 2 \\ 0 & a & -1 \\ 0 & b & -2\end{array}\right]$
divide second row by $2\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & a & -1 \\ 0 & b & -2\end{array}\right]-a r_{2}+\widetilde{r_{3},-b r_{2}}+r_{4}\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & -1-a \\ 0 & 0 & -2-b\end{array}\right]$.
Now the first and second vectors are pivot vectors. So $\operatorname{rank}(A)=2$ if $-1-a=0$ and $-2-b=0$.

So $a=-1$ and $b=-2$
4. Let $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]\right\}$. You can assume that \mathcal{B} is a basis for R^{3}
(a) Which vector x has the coordinate vector $[x]_{B}=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$.

Let $A=\left[\begin{array}{lll}1 & 3 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2\end{array}\right]$. So $x=A[x]_{B}=\left[\begin{array}{lll}1 & 3 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2\end{array}\right]\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]=\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right]$
(b) Find the β-coordinate vector of $y=\left[\begin{array}{c}2 \\ -2 \\ 3\end{array}\right]$.

Solution. We have to solve $A x=\left[\begin{array}{c}2 \\ -2 \\ 3\end{array}\right]$.
$\left[\begin{array}{lll|c}1 & 3 & 0 & 2 \\ 0 & 2 & 0 & -2 \\ 0 & 1 & 2 & 3\end{array}\right] \widetilde{\frac{1}{2} r_{2}}\left[\begin{array}{ccc|c}1 & 3 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 1 & 2 & 3\end{array}\right] \widetilde{-r_{2}+r_{3}}\left[\begin{array}{lll|c}1 & 3 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 2 & 4\end{array}\right]$
$\widetilde{\frac{1}{2} r_{3}}\left[\begin{array}{ccc|c}1 & 3 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2\end{array}\right]-\widetilde{3 r_{2}+r_{1}}\left[\begin{array}{ccc|c}1 & 0 & 0 & 5 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2\end{array}\right]$.
So $[y]_{B}=\left[\begin{array}{c}5 \\ -1 \\ 2\end{array}\right]$.
5. Let

$$
M=\left[\begin{array}{llll}
1 & 1 & 3 & 0 \\
1 & 2 & 5 & 1 \\
1 & 3 & 7 & 2
\end{array}\right]
$$

Find bases for $\operatorname{Col}(M)$ and $\operatorname{Nul}(M)$, and then state the dimensions of these subspaces
Solution: $\left[\begin{array}{llll}1 & 1 & 3 & 0 \\ 1 & 2 & 5 & 1 \\ 1 & 3 & 7 & 2\end{array}\right]-r_{1}+\widetilde{r_{2},-r_{2}}+r_{3}\left[\begin{array}{cccc}1 & 1 & 3 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 2 & 4 & 2\end{array}\right] \widetilde{-2 r_{2}+r_{3}}\left[\begin{array}{llll}1 & 1 & 3 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$
$\widetilde{2 r_{2}+r_{3}}\left[\begin{array}{cccc}1 & 0 & 1 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$.
So the first two vectors are pivot vectors and $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\}$ is a basis for $\operatorname{Col}(A)$ and $\operatorname{dim}(\operatorname{Col}(A))=2$.
The solution to $M x=0$ is $x_{1}+x_{3}-x_{4}=0$ and $x_{2}+2 x_{3}+x_{4}=0$. So
$x=\left[\begin{array}{c}-x_{3}+x_{4} \\ -2 x_{3}-x_{4} \\ x_{3} \\ x_{4}\end{array}\right]=x_{3}\left[\begin{array}{c}-1 \\ -2 \\ 1 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}1 \\ -1 \\ 0 \\ 1\end{array}\right]$. Hence the basis for $\operatorname{Nul}(M)$
is $\left\{\left[\begin{array}{c}-1 \\ -2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 0 \\ 1\end{array}\right]\right\}$ and $\operatorname{dim}(\operatorname{Nul}(M))=2$.
6. Determine which sets in the following are bases for \mathbb{R}^{2} or \mathbb{R}^{3}. Justify your answer
(a) $\left[\begin{array}{c}-1 \\ 2\end{array}\right],\left[\begin{array}{c}2 \\ -4\end{array}\right]$. Solution: Since $\left[\begin{array}{c}2 \\ -4\end{array}\right]=-2\left[\begin{array}{c}-1 \\ 2\end{array}\right]$, the set $\left\{\left[\begin{array}{c}-1 \\ 2\end{array}\right],\left[\begin{array}{c}2 \\ -4\end{array}\right]\right\}$ is dependent.
(b) $\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right]$. Yes. This set forms a basis since they are independent and span R^{3}.
(c) $\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.

This is not a basis since it doesn't span R^{3}.
(d) $\left[\begin{array}{c}-1 \\ 2\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]$. This set forms a basis since they are independent and span R^{3}
(e) $\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$. This is not a basis since it is dependent.
7. Let A be the matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

(a) Find the characteristic equation of A.
(b) Find the eigenvalues and a basis of eigenvectors for A.

Solution.

1. $A-\lambda I=\left[\begin{array}{ccc}2-\lambda & 1 & 1 \\ 1 & 2-\lambda & 1 \\ 1 & 1 & 2-\lambda\end{array}\right]$.

So $\operatorname{det}(A-\lambda I)=(2-\lambda)^{3}+1+1-(2-\lambda)-(2-\lambda)-(2-\lambda)=$ $\left(4-4 \lambda+\lambda^{2}\right)(2-\lambda)+2-6+3 \lambda=8-8 \lambda+2 \lambda^{2}-4 \lambda+4 \lambda^{2}-\lambda^{3}-4+3 \lambda$ $=-\lambda^{3}+6 \lambda^{2}-9 \lambda+4=-(\lambda-1)^{2}(\lambda-4)$. So the characteristic equation is $-(\lambda-1)^{2}(\lambda-4)=0$.
2. Solving the characteristic equation $-(\lambda-1)^{2}(\lambda-4)=0$, we get that the eigenvalues are $\lambda=1$ and $\lambda=4$.
3. When $\lambda=1$, we have
$A-\lambda I=\left[\begin{array}{ccc}2-1 & 1 & 1 \\ 1 & 2-1 & 1 \\ 1 & 1 & 2-1\end{array}\right]=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]-r_{1}+\widetilde{r_{2},-r_{1}}+r_{3}=$ $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.

The solution of $(A-I) x=0$ is $x_{1}+x_{2}+x_{3}=0$ and $x_{1}=-x_{2}-x_{3}$ So $\operatorname{Null}(A-I)=\left\{\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}x_{2}-x_{3} \\ x_{2} \\ x_{3}\end{array}\right]=x_{2}\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}$.
The basis for the eigenspace corresponding to eigenvalue 1 is $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}$
4. When $\lambda=4$, we have
$A-\lambda I=\left[\begin{array}{ccc}2-4 & 1 & 1 \\ 1 & 2-4 & 1 \\ 1 & 1 & 2-4\end{array}\right]=\left[\begin{array}{ccc}-2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2\end{array}\right]$
interchange $\widetilde{1 \text { st row }}$ and 2 nd row $=\left[\begin{array}{ccc}1 & -2 & 1 \\ -2 & 1 & 1 \\ 1 & 1 & -2\end{array}\right]$
$2 r_{1}+\widetilde{r_{2},-r_{1}}+r_{3}=\left[\begin{array}{ccc}1 & -2 & 1 \\ 0 & -3 & 3 \\ 0 & 3 & -3\end{array}\right] \widetilde{r_{2} / 3, r_{2}+r_{3}}=\left[\begin{array}{ccc}1 & -2 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right]$
$\widetilde{2 r_{2}+r_{1}}=\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right]$

The solution of $(A-4 I) x=0$ is $x_{1}-x_{3}=0$ and $x_{2}-x_{3}=0$ So $\operatorname{Null}(A-I)=\left\{\left[\begin{array}{l}x_{3} \\ x_{3} \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$.
The basis for the eigenspace corresponding to eigenvalue 4 is $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$
8. Let A be the matrix

$$
A=\left[\begin{array}{cc}
-3 & -4 \\
-4 & 3
\end{array}\right] .
$$

(a) Find the eigenvalues and a basis of eigenvectors for A.
(b) Diagonalize the matrix A if possible.
(c) Find the matrix exponential e^{A}.

Solution.

1. $A-\lambda I=\left[\begin{array}{cc}-3-\lambda & -4 \\ -4 & 3-\lambda\end{array}\right]$.

So $\operatorname{det}(A-\lambda I)=(-3-\lambda)(3-\lambda)-16=\lambda^{2}-25=(\lambda-5)(\lambda+5)$
So the characteristic equation is $(\lambda-5)(\lambda+5)=0$.
2. Solving the characteristic equation $(\lambda-5)(\lambda+5)=0$, we get that the eigenvalues are $\lambda=5$ and $\lambda=-5$.
3. When $\lambda=5$, we have
$A-\lambda I=\left[\begin{array}{cc}-3-5 & -4 \\ -4 & 3-5\end{array}\right]=\left[\begin{array}{cc}-8 & -4 \\ -4 & 2\end{array}\right] \widetilde{-r_{1} / 2+r_{2}}=\left[\begin{array}{cc}-8 & -4 \\ 0 & 0\end{array}\right]$.
The solution of $(A-5 I) x=0$ is $-8 x_{1}-4 x_{2}=0$, i.e. and $x_{2}=-2 x_{1}$ So $\operatorname{Null}(A-I)=\left\{\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}x_{1} \\ -2 x_{1}\end{array}\right]=x_{1}\left[\begin{array}{c}1 \\ -2\end{array}\right]\right\}$.
The basis for the eigenspace corresponding to eigenvalue 5 is $\left\{\left[\begin{array}{c}1 \\ -2\end{array}\right]\right\}$
4. When $\lambda=-5$, we have
$A-\lambda I=\left[\begin{array}{cc}-3+5 & -4 \\ -4 & 3+5\end{array}\right]=\left[\begin{array}{cc}2 & -4 \\ -4 & 8\end{array}\right] \widetilde{2 r_{1}+r_{2}}=\left[\begin{array}{cc}2 & -4 \\ 0 & 0\end{array}\right]$.

The solution of $(A+5 I) x=0$ is $2 x_{1}-4 x_{2}=0$, i.e. and $x_{1}=2 x_{2}$ So $\operatorname{Null}(A-I)=\left\{\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}2 x_{2} \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$.
The basis for the eigenspace corresponding to eigenvalue -5 is $\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$

Let $P=\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]$. Then $P^{-1}=\frac{1}{5}\left[\begin{array}{cc}1 & -2 \\ 2 & 1\end{array}\right]=\left[\begin{array}{cc}\frac{1}{5} & -\frac{2}{5} \\ \frac{2}{5} & \frac{1}{5}\end{array}\right]$.
So $A=\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]\left[\begin{array}{cc}5 & 0 \\ 0 & -5\end{array}\right]\left[\begin{array}{cc}\frac{1}{5} & -\frac{2}{5} \\ \frac{2}{5} & \frac{1}{5}\end{array}\right]$
and $e^{A}=\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]\left[\begin{array}{cc}e^{5} & 0 \\ 0 & e^{-5}\end{array}\right]\left[\begin{array}{cc}\frac{1}{5} & -\frac{2}{5} \\ \frac{2}{5} & \frac{1}{5}\end{array}\right]=\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]\left[\begin{array}{cc}\frac{1}{5} e^{5} & -\frac{2}{5} e^{5} \\ \frac{2}{5} e^{-5} & \frac{1}{5} e^{-5}\end{array}\right]$
$=\left[\begin{array}{cc}\frac{1}{5} e^{5}+\frac{4}{5} e^{-5} & -\frac{2}{5} e^{5}+\frac{2}{5} e^{-5} \\ -\frac{2}{5} e^{5}+\frac{2}{5} e^{-5} & \frac{2}{5} e^{5}+\frac{1}{5} e^{-5}\end{array}\right]$.
9. Find a good approximation for the vector $\left[\begin{array}{ll}.8 & .6 \\ .2 & .4\end{array}\right]^{n}\left[\begin{array}{l}2 \\ 2\end{array}\right]$ for n very large (say $n=100$).

1. $A-\lambda I=\left[\begin{array}{cc}.8-\lambda & .6 \\ .2 & .4-\lambda\end{array}\right]$.

So $\operatorname{det}(A-\lambda I)=(.8-\lambda)(.4-\lambda)-.12=\lambda^{2}-1.2 \lambda+.32-.12=$ $\lambda^{2}-1.2 \lambda+.2=(\lambda-1)(\lambda-.2)$
So the characteristic equation is $(\lambda-1)(\lambda-.2)=0$.
2. Solving the characteristic equation $(\lambda-1)(\lambda-.2)=0$, we get that the eigenvalues are $\lambda=1$ and $\lambda=.2$.
3. When $\lambda=1$, we have
$A-\lambda I=\left[\begin{array}{cc}.8-1 & .6 \\ .2 & .4-1\end{array}\right]=\left[\begin{array}{cc}-.2 & .6 \\ .2 & -.6\end{array}\right] \widetilde{r_{1}+r_{2}}=\left[\begin{array}{cc}-.2 & .6 \\ 0 & 0\end{array}\right]$.
The solution of $(A-I) x=0$ is $-.2 x_{1}+.6 x_{2}=0$, i.e. and $x_{1}=3 x_{2}$ So $\operatorname{Null}(A-I)=\left\{\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}3 x_{2} \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{l}3 \\ 1\end{array}\right]\right\}$.
The basis for the eigenspace corresponding to eigenvalue 1 is $\left\{\left[\begin{array}{l}3 \\ 1\end{array}\right]\right\}$
4. When $\lambda=0.2$, we have

$$
A-\lambda I=\left[\begin{array}{cc}
.8-.2 & .6 \\
.2 & .4-.2
\end{array}\right]=\left[\begin{array}{cc}
.6 & .6 \\
.2 & .2
\end{array}\right]-\widetilde{r_{1} / 6+r_{2}}=\left[\begin{array}{cc}
.6 & .6 \\
0 & 0
\end{array}\right] .
$$

The solution of $(A-0.2 I) x=0$ is $.6 x_{1}+.6 x_{2}=0$, i.e. and $x_{1}=-x_{2}$
So $\operatorname{Null}(A-0.2 I)=\left\{\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}-x_{2} \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$.
The basis for the eigenspace corresponding to eigenvalue .2 is $\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$
Let $P=\left[\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right]$. Then $P^{-1}=\frac{1}{4}\left[\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right]=\left[\begin{array}{cc}\frac{1}{4} & \frac{1}{4} \\ -\frac{1}{4} & \frac{3}{4}\end{array}\right]$.
So $A=\left[\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & .2\end{array}\right]\left[\begin{array}{cc}\frac{1}{4} & \frac{1}{4} \\ -\frac{1}{4} & \frac{3}{4}\end{array}\right]$.
Hence $A^{n}=\left[\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}1^{n} & 0 \\ 0 & (.2)^{n}\end{array}\right]\left[\begin{array}{cc}\frac{1}{4} & \frac{1}{4} \\ -\frac{1}{4} & \frac{3}{4}\end{array}\right]=\left[\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & (.2)^{n}\end{array}\right]\left[\begin{array}{cc}\frac{1}{4} & \frac{1}{4} \\ -\frac{1}{4} & \frac{3}{4}\end{array}\right]$.
If n is large then $0.2^{n} \approx 0$ and $A^{n} \approx\left[\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}\frac{1}{4} & \frac{1}{4} \\ -\frac{1}{4} & \frac{3}{4}\end{array}\right] \approx$ $\left[\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}\frac{1}{4} & \frac{1}{4} \\ 0 & 0\end{array}\right]=\left[\begin{array}{cc}\frac{3}{4} & \frac{3}{4} \\ \frac{1}{4} & \frac{1}{4}\end{array}\right]$.
Hence $\left[\begin{array}{ll}.8 & .6 \\ .2 & .4\end{array}\right]^{n}\left[\begin{array}{l}2 \\ 2\end{array}\right] \approx\left[\begin{array}{cc}\frac{3}{4} & \frac{3}{4} \\ \frac{1}{4} & \frac{1}{4}\end{array}\right]\left[\begin{array}{l}2 \\ 2\end{array}\right]=\left[\begin{array}{l}\frac{12}{4} \\ \frac{4}{4}\end{array}\right]=\left[\begin{array}{l}3 \\ 1\end{array}\right]$.

