
Solutions for Review Problems

1. Let S be the triangle with vertices A = (2, 2, 2), B = (4, 2, 1) and C = (2, 3, 1).
(a) Find the cosine of the angle BAC at vertex A.
(b) Find the area of the triangle ABC.
(c) Find a vector that is perpendicular to the plane that contains the points

A, B and C.
(d) Find the equation of the plane through A, B and C.
(e) Find the distance between D = (3, 1, 1) and the plane through A, B and

C.
(f) Find the volume of the parallelepiped formed by ~AB , ~AC and ~AD.

Solution. (a) Using A = (2, 2, 2), B = (4, 2, 1) and C = (2, 3, 1), We have
~AB =< 2, 0,−1 >, ~AC =< 0, 1,−1 > and ~BC =< −2, 1, 0 >.

Let θ be the angle BAC at vertex A.

We have cos(θ) =
~AB· ~AC

|| ~AB||·|| ~AC||
= <2,0,−1>·<0,1,−1>√

5·
√

2
= 1√

10
.

(b) First we find

~AB × ~AC =

∣∣∣∣∣∣
~i ~j ~k

2 0 −1

0 1 −1

∣∣∣∣∣∣
=

∣∣∣∣ 0 −1

1 −1

∣∣∣∣~i− ∣∣∣∣ 2 −1

0 1

∣∣∣∣~j +

∣∣∣∣ 2 0

0 1

∣∣∣∣~k =~i + 2~j + 2~k =< 1, 2, 2 >

Thus the area of the triangle ABC = 1
2
|| ~AB × ~AC|| = 1

2

√
22 + 22 + 1 = 3

2
.

(c) The vector ~AB × ~AC =< 1, 2, 2 > is perpendicular to the plane that
contains the points A, B and C.

(d) The normal vector of the plane is ~AB × ~AC =< 1, 2, 2 >. So the equation
of the plane thru A = (2, 2, 2) with normal vector < 1, 2, 2 > is < x−2, y−
2, z − 2 > · < 1, 2, 2 >= 0, i.e. x− 2 + 2y − 4 + 2z − 4 = 0. So the plane
thru A, B and C is x + 2y + 2z = 10.

(e) From previous problem, we know that the equation of the plane through
A, B and C is x+2y +2z = 10. So the distance between D = (3, 1, 1) and

the plane x + 2y + 2z = 10 is |3+2·1+2·1−10|√
12+22+22 = 3

3
= 1.

(f) The volume of the parallelepiped formed by ~AB , ~AC and ~AD

= |( ~AB × ~AC) · ~AD| = | − 2| = 2.
�

2. Find the distance between the planes 2x− y + 2z = 10 and 4x− 2y + 4z = 7.

Solution. The plane 4x−2y+4z = 7 can be rewritten as 2x−y+2z = 7
2
. Using

the distance formula between planes, the distance between P1 : 2x−y +2z = 10
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and P2 : 2x− y + 2z = 7
2

is
|10− 7

2
|√

22+22+(−1)2
= 13

6
.

A plane P is drawn through the points A = (1,−1, 0), B = (0, 1,−1) and
C = (1, 0,−1). Find the distance between the plane P and the point (1, 1, 1).

�

3. (a) Find a vector equation of the line through (2, 4, 1) and (4, 5, 3)
(b) Find a vector equation of the line through (1, 1, 1) that is parallel to the

line through (2, 4, 1) and (4, 5, 3).
(c) Find a vector equation of the line through (1, 1, 1) that is parallel to the

line x−2
2

= −y
1

= z−2
2

.

Solution.
(a) Let P = (2, 4, 1) and Q = (4, 5, 3). The direction of the line is

−→
PQ =<

4 − 2, 5 − 4, 3 − 1 >=< 2, 1, 2 >. The vector equation is < x, y, z >=<
2, 4, 1 > +t < 2, 1, 2 > or x = 2 + 2t, y = 4 + t and z = 1 + 2t.

(b) The direction of the line is
−→
PQ =< 4− 2, 5− 4, 3− 1 >=< 2, 1, 2 >. The

starting point of the line is (1, 1, 1). So the equation of the line is x = 1+2t,
y = 1 + t and z = 1 + 2t.

(c) The direction of the line x−2
2

= −y
1

= z−2
2

is < 2,−1, 2 >. The starting
point of the line is (1, 1, 1). So the equation of the line is x = 1 + 2t,
y = 1− t and z = 1 + 2t.

�

4. (a) Find the equation of a plane perpendicular to the vector ~i − ~j + ~k and
passing through the point (1, 1, 1).

(b) Find the equation of a plane perpendicular to the planes 3x + 2y − z = 7
and x− 4y + 2z = 0 and passing through the point (1, 1, 1).

Solution.
(a) The equation of the plane with normal vector~i−~j +~k and passing through

the point (1, 1, 1) is
〈1,−1, 1〉·〈x−1, y−1, z−1〉 = (x−1)−(y−1)+(z−1) = 0 or x−y+z = 1.

(b) The plane that is perpendicular to the planes 3x+2y− z = 7 and x−4y +
2z = 0 has normal vector
〈3, 2,−1〉 × 〈1,−4, 2〉 = 〈0,−7,−14〉. Thus the equation of the plane is
−7y − 14z = −21, that is y + 2z = 3.

�

5. Find the arc-length of the curve r(t) = 〈
√

2t, et, e−t〉 when 0 ≤ t ≤ ln(2).
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Solution. Given r(t) = 〈
√

2t, et, e−t〉, we have r′(t) = 〈
√

2, et,−e−t〉 and |r′(t)| =√
2 + e−2t + e2t ==

√
(e−t + et)2 = e−t + et. Hence the arc-length of the curve

r(t) = 〈
√

2t, et, e−t〉 between 0 ≤ t ≤ ln(2) is
∫ ln(2)

0
|r′(t)|dt =

∫ ln(2)

0
(e−t +

et)dt = −e−t + et|ln(2)
0 = −e− ln(2) + eln(2) − (−1 + 1) = −1

2
+ 2 = 3

2
. Note that

e− ln(2) = 1
eln(2) = 1

2
.

�

6. Find parametric equations for the tangent line to the curve r(t) = 〈t3, t, t3〉 at
the point (−1, 1,−1).

Solution. Note that r(t) = 〈t3, t, t3〉. We have r(−1) = 〈−1, 1,−1〉. Taking
the derivative of r(t), we get r′(t) = 〈3t2, 1, 3t3〉. Thus the tangent vector at
t = −1 is r′(−1) = 〈3, 1, 3〉. Therefore parametric equations for the tangent line
is x = −1 + 3t, y = 1 + t and z = −1 + 3t.

�

7. Find the linear approximation of the function f(x, y, z) =
√

x2 + y2 + z2 at

(1, 2, 2) and use it to estimate
√

(1.1)2 + (2.1)2 + (1.9)2.

Solution. The partial derivatives are fx(x, y, z) = x√
x2+y2+z2

, fy(x, y, z) = y√
x2+y2+z2

,

fy(x, y, z) = z√
x2+y2+z2

, fx(1, 2, 2) = 1
3

and fy(1, 2, 2) = 2
3

and fz(1, 2, 2) = 2
3
.

The linear approximation of f(x, y, z) at (1, 2, 2) is

L(x, y, z) = f(1, 2, 2) + fx(1, 2, 2)(x− 1) + fy(1, 2, 2)(y − 2) + fz(1, 2, 2)(z − 2)

= 3 +
1

3
(x− 1) +

2

3
(y − 2) +

2

3
(z − 2).

Thus L(1.1, 2.1, 1.9) = 3 + 1
3
(1.1− 1) + 2

3
(2.1− 2) + 2

3
(1.9− 2) = 3 + .1+.2−.2

3
=

3 + .1
3
≈ 3.033. Hence

√
(1.1)2 + (2.1)2 + (1.9)2 is about 3.033.

�

8. (a) Find the equation for the plane tangent to the surface z = 3x2 − y2 + 2x
at (1,−2, 1).

(b) Find the equation for the plane tangent to the surface x2 + xy2 + xyz = 4
at (1, 1, 2).

Solution. (a) Let f(x, y) = 3x2 − y2 + 2x. We have fx = 6x + 2, fy = −2y,
fx(1,−2) = 8 and fy(1,−2) = 4. The equation of the tangent plane through
the point (1,−2, 1) is

z = f(1,−2) + fx(1,−2)(x− 1) + fy(1,−2)(y + 2)

= 1 + 8(x− 1) + 4(y + 2) = 8x + 4y + 1.
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(b) In general, the normal vector for the tangent plane to the level surface of
F (x, y, z) = k at the point (a, b, c) is ∇F (a, b, c).

The surface x2+xy2+xyz = 4 can be rewritten as F (x, y, z) = x2+xy2+xyz =
4, ∇F (x, y, z) = 〈2x + y2 + yz, 2xy + xz, xy〉 and
∇F (1, 1, 2) = 〈5, 4, 1〉 Thus the equation of the tangent plane to the surface
x2 + xy2 + xyz = 4 at the point (1, 1, 2) is
〈5, 4, 1〉 · 〈x− 1, y − 1, z − 2〉 = 0 which yields
5x− 5 + 4y − 4 + z − 2 = 0. It can be simplified as 5x + 4y + z − 11 = 0.

�

9. Suppose that over a certain region of plane the electrical potential is given by
V (x, y) = x2 − xy + y2.
(a) Find the direction of the greatest decrease in the electrical potential at the

point (1, 1). What is the magnitude of the greatest decrease?
(b) Find the rate of change of V at (1, 1) in the direction 〈3,−4〉.

Solution. (a) We have

∇V (x, y) = 〈Vx(x, y), Vy(x, y)〉 = 〈(x2−xy + y2)x, (x
2−xy + y2)y〉 = 〈2x− y,−x+2y〉

Since

∇V (x, y) = 〈2x− y,−x + 2y〉

the direction of the greatest decrease in electrical potential is

−∇V (1, 1) = −〈1, 1〉

and the magnitude is −‖∇V (1, 1)‖ = −
√

2.

(b) The unit vector in the direction 〈3,−4〉 is ~u = 1
5
〈3,−4〉. Thus the rate of

change of V at (1, 1) in the direction 〈3,−4〉 is

∇V (1, 1) · ~u = 〈1, 1〉 · 1

5
〈3,−4〉 = −1

5
.

�

10. Find the local maxima, local minima and saddle points of the following functions.
Decide if the local maxima or minima is global maxima or minima. Explain.
(a) f(x, y) = 3x2y + y3 − 3x2 − 3y2

(b) f(x, y) = x2 + y3 − 3xy
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Solution. (a) To find critical points, set fx(x, y) = 12 − 6x = 0 and fy(x, y) =
6 − 2y = 0. Hence, (2, 3) is the only critical point. We also have fxx = −6,
fxy = fyx = 0 and fyy = −2.

(D2f(x, y)) = (
−6 0

0 −2
)

Since det(D2f(2, 3)) = 12 > 0 and fxx(2, 3) < 0, the second derivative test
implies that f has a local maximum at (2, 3). Because f is a quadratic function,
it follows the graph of f is an elliptical paraboloid and (2, 3) is a global maximum.
We can also see that f has a global maximum at (2, 3) be completing the square:
f(x, y) = 31− 3(x− 2)2 − (y − 3)2.

(b) The system of equations

fx(x, y) = 2x− 3y = 0 fy(x, y) = 3y2 − 3x = 0

implies that x = 3
2
y and 3

(
y2− 3

2
y
)

= 2y
(
y− 3

2

)
= 0. Thus, (0, 0) and (9/4, 3/2)

are the critical points. We also have fxx = 2, fxy = fyx = −3 and fyy = 6y.

(D2f(x, y)) =

(
2 −3

−3 6y

)
Since

Det(D2f(x, y)) = fxxfyy − f 2
xy = (2)(6y)− (−3)2 = 12y − 9,

Det(D2f(0, 0)) = −9 < 0,

Det(D2f(9/4, 3/2)) = 18 > 0,

the second derivative test establishes that f has a saddle point at (0, 0) and a
local minimum at (9/4, 3/2). Because limy→−∞ f(0, y) = limy→−∞ y3 = −∞, we
see that (9/4, 3/2) is not a global minimum.

�

11. Use Lagrange multipliers to find the maximum or minimum values of f subject
to the given constraint.
(a) f(x, y, z) = x2 − y2, x2 + y2 = 2

Solution. Let f(x, y) = x2 − y2 and g(x, y) = x2 + y2 = 2. The necessary
conditions for the optimizer (x, y) are
∇f(x, y) = λ∇g(x, y) and the constraint equations x2 + y2 = 2 which are:
Since ∇f(x, y) = (2x,−2y) and ∇g(x, y) = (2x, 2y), thus (x, y) must sat-
isfy

2x = 2λx(0.0.1)

−2y = 2λy(0.0.2)

x2 + y2 = 2(0.0.3)
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From (4), (5) , we get 4x2 + 4y2 = 4λ2(x2 + y2). Since
x2 + y2 = 2m we have λ2 = 1. So λ = ±1. If lambda = 1, then eq(4) is
always true and we get y = 0 by eq(5). Using x2+y2 = 2, we get x = ±

√
2.

If lambda = −1, then eq(5) is always true and we get x = 0 by eq(4).
Using x2 + y2 = 2, we get y = ±

√
2.

So the candidates are (
√

2, 0), (−
√

2, 0), (0,
√

2, 0) and (0,
√

2, 0).
So f((

√
2, 0)) = f((−

√
2, 0)) = 2 and f((0,

√
2, 0)) = f((0,

√
2, 0)) = −2.

Thus the maximum is 2, the minimum is −2, the maximizers are (
√

2, 0),
(−
√

2, 0), and the minimizers are (0,
√

2, 0) and (0,
√

2, 0).
�

(b) f(x, y, z) = x + y + z, x2 + y2 + z2 = 1.

Solution. Let f(x, y, z) = x + y + z and g(x, y, z) = x2 + y2 + z2 = 1.
We have ∇f(x, y, z) = (1, 1, 1) and∇g(x, y, z) = (2x, 2y, 2z).
The necessary conditions for the optimizer (x, y, z) are
∇f(x, y, z) = λ∇g(x, y, z) and the constraint equations which are:

1 = 2λx(0.0.4)

1 = 2λy(0.0.5)

1 = 2λz(0.0.6)

x2 + y2 + z2 = 1(0.0.7)

From (7),(8) (9) and (10), we know that λ 6= 0 , x = 1
2λ

, y = 1
2λ

and z = 1
2λ

.

Plugging into (10), we get 1
4λ2 + 1

4λ2 + 1
4λ2 = 1 , 3

4λ2 = 1 and λ = ±
√

3
2

. So

(x, y, z) = ( 1
2λ

, 1
2λ

, 1
2λ

) = ( 1√
3
, 1√

3
, 1√

3
) or (x, y, z) = ((− 1√

3
,− 1√

3
,− 1√

3
).

We have f(( 1√
3
, 1√

3
, 1√

3
)) = 3√

3
=
√

3 and f((− 1√
3
,− 1√

3
,− 1√

3
)) = − 3√

3
=

−
√

3.
Thus the maximizers are ( 1√

3
, 1√

3
, 1√

3
) with maximum

√
3. The minimizers

are (− 1√
3
,− 1√

3
,− 1√

3
) with minimum −

√
3. �

12. Compute the following iterated integrals.

(a)
∫ 1

0

∫ 1
√

y
yex2

x3 dxdy

Let D = {(x, y)|√y ≤ x ≤ 1, 0 ≤ y ≤ 1} Then 0 ≤ y ≤ x2 and 0 ≤ x ≤ 1.
So D is the same as {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ x2}.

We have
∫ 1

0

∫ 1
√

y
yex2

x3 dxdy =
∫ 1

0

∫ x2

0
yex2

x3 dydx =
∫ 1

0
y2ex2

2x3

∣∣∣x2

0
dx =

∫ 1

0
xex2

2
dx =

ex2

4
|10 = e

4
− 1

4
.

(b)
∫ 2

0

∫ 0

−
√

4−x2 e−x2−y2
dydx
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Solution. The region of integration is {(x, y)0 ≤ x ≤ 2,−
√

4− x2 ≤ y ≤
0}. The is the region in fourth quadrant. In polar coordinates, it is R ={
(r, θ) : 0 ≤ r ≤ 3, −π

2
≤ θ ≤ 0

}
. We also have x2 + y2 = r2 and∫ 2

0

∫ 0

−
√

4−x2 e−x2−y2
dydx =

∫ 0
−π
2

∫ 2

0
e−r2 · rdrdθ

=
∫ 0
−π
2
− e−r2

2

∣∣∣2
0
dθ = −( e−4

2
− 1

2
) · π

2
. �

(c)
∫ 1

−1

∫ √
1−x2

−
√

1−x2

∫ 2−x2−y2

x2+y2 (x2 + y2)
3
2 dzdydx

Solution. The region of integration is {(x, y, z)| − 1 ≤ x ≤ 1,−
√

1− x2 ≤
y ≤

√
1− x2, x2 + y2 ≤ z ≤ 2− x2 − y2}. In cylindrical coordinates, it is

R =
{
(r, θ, z) : 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, r2 ≤ z ≤ 2 − r2

}
. Recall that

x = r cos(θ), x = r sin(θ) We have (x2 + y2)
3
2 = r3 and∫ 1

−1

∫ √
1−x2

−
√

1−x2

∫ 2−x2−y2

x2+y2 (x2 + y2)
3
2 dzdydx =

∫ 2π

0

∫ 1

0

∫ 2−r2

r2 r3 · rdzdrdθ

=
∫ 2π

0

∫ 1

0
r4z

∣∣∣2−r2

r2
drdθ

=
∫ 2π

0

∫ 1

0
r4(2− 2r2)drdθ

=
∫ 2π

0

∫ 1

0
(2r5

5
− 2r7

7
)
∣∣∣1
0
dθ

=
∫ π

2

0
4
35

dθ

= 8π
35

.
�

(d)
∫ 2

−2

∫√4−y2

0

∫√4−x2−y2

−
√

4−x2−y2
y2

√
x2 + y2 + z2dzdxdy

Solution. In spherical coordinates, the region E = {(x, y, z)|0 ≤ x ≤√
4− y2,−2 ≤ y ≤ 2,−

√
4− x2 − y2 ≤ z ≤

√
4− x2 − y2}
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is described by the inequalities 0 ≤ ρ ≤ 2, 0 ≤ θ ≤ ππ and 0 ≤ φ ≤ π.
Note that y = ρ sin(φ) cos(θ) Hence, the integral is

∫ 2

−2

∫ √
4−y2

0

∫ √
4−x2−y2

−
√

4−x2−y2

y2
√

x2 + y2 + z2dzdxdy

=

∫ π

0

∫ π

0

∫ 2

0

ρ2 sin2(φ) cos2(θ)(ρ) ρ2 sin(φ) dρ dθ dφ

=

∫ π

0

∫ π

0

∫ 2

0

ρ5 sin3(φ) cos2(θ) dρ dθ dφ

=

(∫ π

0

cos2(θ)dθ

) (∫ π

0

sin3(φ) dφ

) (∫ 2

0

ρ5 dρ

)
=

(∫ π

0

1 + cos(2θ)

2
dθ

) (∫ π

0

(1− cos2(φ)) sin(φ) dφ

) (∫ 2

0

ρ5 dρ

)
=

(
(
θ

2
+

sin(2θ)

4
)
∣∣∣π
0

) (
(− cos(φ) +

cos3(φ)

3
)
∣∣∣π
0

) (
ρ6

6

∣∣∣2
0

)
=

π

2
· 4

3
· 64

6
=

64π

9
�

13. Find the volume of the following regions:
(a) The solid bounded by the surface z = x

√
x2 + y and the planes x = 0,

x = 1, y = 0, y = 1 and z = 0.

Solution. The volume is
∫ 1

0

∫ 1

0
x
√

x2 + ydxdy Let u = x2 + y. Then du =

2xdx, xdx = du
2

and
∫

x
√

x2 + ydx =
∫

u1/2

2
du = u3/2

3
+ C = (x2+y)3/2

3
+ C.

So
∫ 1

0

∫ 1

0
x
√

x2 + ydxdy =
∫ 1

0
(x2+y)3/2

3

∣∣∣1
0
dy

=
∫ 1

0
(1+y)3/2

3
− (y)3/2

3
dx = 2(1+y)5/2

15
− 2(y)5/2

15

∣∣∣1
0

= 2(2)5/2

15
− 2

15
− ( 2

15
− 0)

= 2(2)5/2

15
− 4

15
= 8

√
2

15
− 4

15
�

(b) The solid bounded by the plane x + y + z = 3, x = 0, y = 0 and z = 0.

Solution. The region E bounded by the xy, yz, xz planes and the plane
x + y + z = 3 is the set

{
(x, y, z) ∈ R3 : 0 ≤ x ≤ 3, 0 ≤ y ≤ 3− x, 0 ≤ z ≤
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3− x− y
}
. The volume of E is∫ ∫ ∫

E

dV =

∫ 3)

0

∫ 3−x

0

∫ 3−x−y

0

dz dy dx =

∫ 3)

0

∫ 3−x

0

z
∣∣∣3−x−y

0
dy dx

=

∫ 3

0

∫ 3−x

0

3− x− y dy dx =

∫ 3

0

3y − xy − y2

2

∣∣∣3−x

0
dx (by substitution u=4-x-2y)

=

∫ 3

0

3(3− x)− x(3− x)− (3− x)2

2
dx =

∫ 3

0

9− 3x + 3− 3x + x2− (x2 − 6x + 9)

2
dx

=

∫ 3

0

9

2
− 3x +

x2

2
dx =

9x

2
− 3x2

2
+

x3

6

∣∣∣3
0

=
27

2
− 27

2
+

27

6
=

9

2
.

�

(c) The region bounded by the cylinder x2 + y2 = 4 and the plane z = 0 and
y + z = 3.

Solution. The region is bounded above by the plane z = 3 − y and below
by z = 0. In polar coordinates, this region x2 + y2 ≤ 4 is R =

{
(r, θ) : 0 ≤

r ≤ 2, 0 ≤ θ ≤ 2π
}
. Note that z = 3 − y = 3 − r cos(θ) Hence, we can

compute the volume of the region by

Volume =

∫ 2π

0

∫ 2

0

(
3− r cos(θ)

)
rdr dθ

=

∫ 2π

0

∫ 2

0

3r − r2 cos(θ) dr dθ =

∫ 2π

0

[
3
2
r2 − 1

3
r3 cos(θ)

]2

0
dθ

=

∫ 2π

0

[
6− 8

3
cos(θ)

]
dθ = 12π . �

14. Let C be the oriented path which is a straight line segment running from (1, 1, 1)
to (0,−1, 3). Calculate

∫
fds where f = (x + y + z).

Solution.
C is parametrized by x(t) = 1−t, y(t) = 1−2t and z(t) = 1+2t where 0 ≤ t ≤ 1.
We have f(x(t), y(t), z(t)) = x(t) + y(t) + z(t) = 1− t + 1− 2t + 1 + 2t = 3− t

and ds =
√

x′(t)2 + y′(t)2 + z′(t)2dt =
√

(−1)2 + (−2)2 + 22dt =
√

9dt = 3dt.

So
∫

C
fds =

∫ 1

0
(3− t)dt = 3t− t2

2
|10 = 5

2
.

�

15. Calculate the following line integrals
∫

C
~F · d~r:

(a) ~F = y sin(xy)~i + x sin(xy)~j and C is the parabola y = 2x2 from (1, 2) to
(3, 18).

(b) ~F = 2x~i− 4y~j + (2z − 3)~k and C is the line from (1, 1, 1) to (2, 3,−1).
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Solution.
(a) If f(x, y) = − cos(xy) then ∇f = y sin(xy)~i + x sin(xy)~j = ~F . Hence, the

Fundamental Theorem for line integrals implies that∫
C

~F · d~r = f(3, 18)− f(1, 2) = cos(2)− cos(54) .

(b) If f(x, y, z) = x2 − 2y2 + z2 − 3z then ∇f = 2x~i − 4y~j + (2z − 3)~k = ~F .
Hence, the Fundamental Theorem for line integrals implies that∫

C

~F · d~r = f(2, 3,−1)− f(1, 1, 1) = −10 + 3 = −7 . �

16. Calculate the circulation of ~F around the given paths.
(a) ~F = xy~j around the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 oriented counterclock-

wise.
(b) ~F = (2x2+3y)~i+(2x+3y2)~j around the triangle with vertices (2, 0), (0, 3),

(−2, 0) oriented counterclockwise.

(c) ~F = 3y~i + xy~j around the unit circle oriented counterclockwise.

(d) ~F = xz~i + (x + yz)~j + x2~k and C is the circle x2 + y2 = 1, z = 2 oriented
counterclockwise when viewed from above.

Solution.
(a) If R = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} then Green’s Theorem implies that∫

∂R

~F · d~r =

∫
R

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∫ 1

0

∫ 1

0

y dy dx =

(∫ 1

0

dx

) (∫ 1

0

y dy

)
=

1

2
.

(b) If T is the triangle with vertices (2, 0), (0, 3), (−2, 0) then Green’s Theorem
gives∫

∂T

~F · d~r =

∫
T

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∫
T

2− 3 dA = −Area(T ) = −1

2
(4)(3) = −6 .

(c) If D is the unit disk then Green’s Theorem yields∫
∂D

~F · d~r =

∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∫
D

y − 3 dA =

∫
D

y dA− 3

∫
D

dy = 3π .

Indeed, the function f(x, y) = y is symmetry about the origin [which means
f(−x,−y) = −f(x, y)] so the integral of f(x, y) over D is zero.

(d) If S is the disk given by x2 + y2 ≤ 1 and z = 2 oriented upwards then

∂S = C. Since ∇× ~F = det

[
~i ~j ~k
∂
∂x

∂
∂y

∂
∂z

xz x+yz x2

]
= −y~i+x~j+~k, Stokes’ Theorem

implies that∫
∂S

~F · d~r =

∫
S

(∇× ~F ) · d ~A =

∫
S

(−y~i + 3x~j + ~k) · ~k dA = Area(S) = π . �
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17. Calculate the area of the region within the ellipse x2/a2 + y2/b2 = 1 parameter-
ized by x = a cos(t), y = b sin(t) for 0 ≤ t ≤ 2π.

Solution. If R is region in the plane and ~F = x~j then Green’s Theorem implies

that Area(R) =
∫

R
dA =

∫
R

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∫
∂R

~F · d~r. Using this idea, we

can calculate the area of the region enclosed by the given parameterized curves.
For the ellipse, we have

Area =

∫
∂R

~F · d~r =

∫ 2π

0

a cos(t)b cos(t) dt = ab

∫ 2π

0

cos2(t) dt

= ab

[
1

2
cos(t) sin(t) +

t

2

]2π

0

= abπ . �

18. Compute the flux of the vector field ~F through the surface S.
(a) ~F = x~i + y~j and S is the part of the surface z = 25− (x2 + y2) above the

disk of radius 5 centered at the origin oriented upward.

(b) ~F = −y~i+ z~k and S is the part of the surface z = y2 +5 over the rectangle
−2 ≤ x ≤ 1, 0 ≤ y ≤ 1 oriented upward.

(c) ~F = y~i+~j−xz~k and S is the surface y = x2 + z2 with x2 + z2 ≤ 1 oriented
in the positive y-direction.

(d) ~F = x2~i + (y − 2xy)~j + 10z~k and S is the sphere of radius 5 centered at
the origin oriented outward.

(e) ~F = −z~i + x~k and S is a square pyramid with height 3 and base on the
xy-plane of side length 1.

(f) ~F = y~j and S is a closed vertical cylinder of height 2 with its base a circle
of radius 1 on the xy-plane centered at the origin.

Solution.
(a) The surface S is given by ~r(s, t) = s cos(t)~i + s sin(t)~j + (25 − s2)~k for

0 ≤ s ≤ 5, 0 ≤ t ≤ 2π. Since

∂~r

∂s
× ∂~r

∂t
= det

 ~i ~j ~k

cos(t) sin(t) −2s

−s sin(t) s cos(t) 0

 = 2s2 cos(t)~i + 2s2 sin(t)~j + s~k ,
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we have∫
S

~F · d ~A =

∫ 2π

0

∫ 5

0

~F
(
~r(s, t)

)
·
(

∂~r

∂s
× ∂~r

∂t

)
ds dt

=

∫ 2π

0

∫ 5

0

(
s cos(t)~i + s sin(t)~j

)
·
(
2s2 cos(t)~i + 2s2 sin(t)~j + s~k

)
ds dt

=

∫ 2π

0

∫ 5

0

2s3 cos2(t) + 2s3 sin2(t) ds dt

=

∫ 2π

0

∫ 5

0

2s3 ds dt = 2π

[
s4

2

]5

0

= 725π .

(b) The surface S is given by ~r(s, t) = s~i + t~j + (t2 + 5)~k for −2 ≤ s ≤ 1,

0 ≤ t ≤ 1. Since ∂~r
∂s
× ∂~r

∂t
= det

[
~i ~j ~k
1 0 0
0 1 2t

]
= −2t~j + ~k, we have∫

S

~F · d ~A =

∫ 1

−2

∫ 1

0

~F
(
~r(s, t)

)
·
(

∂~r

∂s
× ∂~r

∂t

)
ds dt

=

∫ 1

−2

∫ 1

0

(
−t~i + (t2 + 5)~k

)
· (−2t~j + ~k) dt ds

=

∫ 1

−2

∫ 1

0

t2 + 5 dt ds

=

(∫ 1

−2

ds

) (∫ 1

0

t2 + 5 dt

)
= 3

[
1
3
t3 + 5t

]1

0
= 16 .

(c) The surface S is given by ~r(s, t) = s cos(t)~i + s2~j + s sin(t)~k for 0 ≤ s ≤ 1,
0 ≤ t ≤ 2π. Since

∂~r

∂t
× ∂~r

∂s
= det

 ~i ~j ~k

−s sin(t) 0 s cos(t)

cos(t) 2s sin(t)

 = −2s2 cos(t)~i + s~j − 2s2 sin(t)~k

we have∫
S

~F · d ~A =

∫ 1

0

∫ 2π

0

~F
(
~r(s, t)

)
·
(

∂~r

∂t
× ∂~r

∂s

)
ds dt

=

∫ 1

0

∫ 2π

0

(
s2~i +~j − s2 sin(t) cos(t)~k

)
·
(
−2s2 cos(t)~i + s~j − 2s2 sin(t)~k

)
dt ds

=

∫ 1

0

∫ 2π

0

−2s4 cos(t) + s + 2s4 sin2(t) cos(t) dt ds

=

∫ 1

0

[
−2s4 sin(t) + st +

2

3
s4 sin3(t)

]2π

0

ds =

∫ 1

0

2πs ds = π .



Math 2850 Sec 4: page 13 of 14 Solutions for Review Problems

(d) If D is the ball of radius 5 centered at the origin then ∂D = S. The
Divergence Theorem implies that∫

∂D

~F · d ~A =

∫
D

(∇ · ~F ) dV =

∫
D

2x + (1− 2x) + 10 dV = 11 · Volume(B) =
5500π

3
.

(e) If P is the solid square pyramid with height 3 and base on the xy-plane of
side length 1 then ∂P = S. Hence, the Divergence Theorem gives:∫

∂P

~F · d ~A =

∫
P

(∇ · ~F ) dV =

∫
P

0 dV = 0 .

(f) If W is the solid vertical cylinder of height 2 with its base a circle of radius
1 on the xy-plane centered at the origin then ∂W = S. Applying the
Divergence Theorem yields∫

∂W

~F · d ~A =

∫
W

(∇ · ~F ) dV =

∫
W

1 dV = Volume(W ) = 2π . �

19. Let ~F = (8yz − z)~j + (3− 4z2)~k.

(a) Show that ~G = 4yz2~i + 3x~j + xz~k is a vector potential for ~F .

(b) Evaluate
∫

S
~F · d ~A where S is the upper hemisphere of radius 5 centered

at the origin oriented upwards.

Solution.

(a) Since ∇× ~G = det

[
~i ~j ~k
∂
∂x

∂
∂y

∂
∂z

4yz2 3x xz

]
= (8yz−z)~j +(3−4z2)~k = ~F , we see that

~G is a vector potential for ~F .
(b) If C is the circle of radius 5 in the xy-plane centered at the origin oriented

counterclockwise when viewed from above, then ∂S = C. Hence, Stoke’s
Theorem implies that

∫
S

~F · d ~A =
∫

S
(∇× ~G) · d ~A =

∫
C

~G · d~r. Since C can

be parameterized by ~r(t) = 5 cos(t)~i + 5 sin(t)~j for 0 ≤ t ≤ 2π, we have∫
S

~F · d ~A =

∫
C

~G · d~r =

∫ 2π

0

~G
(
~r(t)

)
· ~r ′(t) dt

=

∫ 2π

0

(
15 cos(t)~j

)
·
(
−5 sin(t)~i + 5 cos(t)~j

)
dt

= 75

∫ 2π

0

cos2(t) dt = 75

[
1

2
cos(t) sin(t) +

t

2

]2π

0

= 75π .

Alternatively, let D be the disk of radius 5 in the xy-plane centered at
the origin oriented upwards. Hence, ∂D = C = ∂S and Stoke’s Theorem
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implies that∫
S

~F · d ~A =

∫
S

(∇× ~G) · d ~A =

∫
C

~G · d~r =

∫
D

(∇× ~G) · d ~A

=

∫
D

~F · d ~A =

∫
D

~F · ~k dA =

∫
D

(3− 4(0)2) dA = 3 · Area(D) = 75π . �

20. For constants a, b, c and m consider the vector field

~F = (ax + by + 5z)~i + (x + cz)~j + (3y + mx)~k .

(a) Suppose that the flux of ~F through any closed surface is 0. What does this
tell you about the values of the constants a, b, c, m?

(b) Suppose instead that the circulation of ~F around any closed curve is 0.
What does this tell you about the values of the constants a, b, c, m?

Solution.
(a) Let W be any solid region in 3-space. Since the flux of ~F through any

closed surface is 0 the Divergence Theorem implies that

0 =

∫
∂W

~F · d ~A =

∫
W

∇ · ~F dV .

By choosing W to be a sequence of balls centered at (x, y, z) that con-

tract down to (x, y, z) in the limit, we deduce that ∇ · ~F = 0 everywhere.

However, ∇ · ~F = a which means a = 0.
(b) Let S be any smooth oriented surface with piecewise smooth boundary.

Since the circulation of ~F around any closed curve is 0, Stokes’ Theorem
implies that 0 =

∫
∂S

~F · d~r =
∫

S
(∇× ~F ) · d ~A. By choosing S be to a small

disk perpendicular to the curl of ~F at (x, y, z), we deduce that ∇× ~F = ~0.
However, we have

∇× ~F = det

 ~i ~j ~k
∂
∂x

∂
∂y

∂
∂z

ax + by + 5z x + cz 3y + mx

 = (3− c)~i + (5−m)~j + (1− b)~k

which means that b = 1, c = 3 and m = 5. �


