Solutions for Review Problems

1. Let S be the triangle with vertices A = (2,2,2), B =(4,2,1) and C = (2,3,1).
(a) Find the cosine of the angle BAC at vertex A.
(b) Find the area of the triangle ABC.
(c) Find a vector that is perpendicular to the plane that contains the points

A, B and C.

(d) Find the equation of the plane through A, B and C.

(e) Find the distance between D = (3,1,1) and the plane through A, B and
C.

(f) Find the volume of the parallelepiped formed by AB , AC and AD.

Solution. (a) Using A = (2,2,2), B = (4,2,1) and C = (2,3,1), We have
AB =<2,0,—1>, AC =<0,1,—1 > and BC =< —2,1,0 >.

Let 0 be the angle BAC' at vertex A.
___ABAC  _ <2,0,-1><01,-1> _ 1
We have cos(f) = TABI AT = = = 75
(b) First we find

i 7k
ABxAC =2 0 —1
01 —1
0 —1 |- 2 -1 |- 2 0> - _= -
—‘1 1 z—‘o 1 7+ 0 1‘k—l+2j—|—2/{3—<1,2,2>

Thus the area of the triangle ABC = %||A@ x AC|| = W2+ 2+1=3

(c) The vector AB x AC =< 1,2,2 > is perpendicular to the plane that
contains the points A, B and C.

(d) The normal vector of the plane is AB x AC' =< 1,2,2 >. So the equation
of the plane thru A = (2,2, 2) with normal vector < 1,2,2 >is < x —2,y—
2,2—2>-<1,2,2>=0,ie. x —2+42y —4+ 2z —4 = 0. So the plane
thru A, B and C'is x + 2y + 2z = 10.

(e) From previous problem, we know that the equation of the plane through
A, B and C'is x4 2y + 2z = 10. So the distance between D = (3,1,1) and
the plane z + 2y + 2z = 10 is % = % =1

(f) The volume of the parallelepiped formed by AB , AC and AD
= [(ABx AC)-AD| =|—-2| =2.

O

2. Find the distance between the planes 2z — y + 22 = 10 and 42 — 2y + 42 = 7.

Solution. The plane 4x —2y+4z = 7 can be rewritten as 2x —y+2z = % Using
the distance formula between planes, the distance between P; : 2x —y+22z = 10

Math 2850 Sec 4: page 1 of 14
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_I
andPQ:Qx—yﬁ—Qz:%iSL:Q‘

V22224 (-1)2 6
A plane P is drawn through the points A = (1,—1,0), B = (0,1,—1) and
C' = (1,0,—1). Find the distance between the plane P and the point (1,1, 1).
]

3. (a) Find a vector equation of the line through (2,4,1) and (4,5, 3)
(b) Find a vector equation of the line through (1,1,1) that is parallel to the
line through (2,4, 1) and (4, 5, 3).
(c) Find a vector equation of the line through (1,1, 1) that is parallel to the
2 Yy _ z—2

a2y
line 5 = — 1 =55

Solution. N

(a) Let P = (2,4,1) and @Q = (4,5,3). The direction of the line is PQ) =<
4 —-2,5—-4,3—1>=<2,1,2 >. The vector equation is < x,y,z >=<
2,41 >4+t <2,1,2> orx:_2>+2t,y:4+tandz:1+2t.

(b) The direction of the line is PQ =<4 —2,5—-4,3—-1>=<2,1,2>. The
starting point of the line is (1, 1,1). So the equation of the line is x = 1+42t,
y=14+tand z =1+ 2¢.

(c) The direction of the hn
point of the line is (1,
yzl—tandzzl—l—Qt

72:—?1:%15<2 —1,2 >. The starting
,1). So the equation of the line is z = 1 + 2t,

O

4. (a) Find the equation of a plane perpendicular to the vector i—J+ k and
passing through the point (1,1, 1).
(b) Find the equation of a plane perpendicular to the planes 3x + 2y — 2z =7
and x — 4y + 2z = 0 and passing through the point (1,1,1).

Solution. .
(a) The equation of the plane with normal vector i —j +k and passing through
the point (1,1,1) is
(1,-1,1)(z—1,y—1,2—1) = (z—1)—(y—1)+(2—1) =0orz—y+2z = 1.

(b) The plane that is perpendicular to the planes 3x 42y —z = 7 and = — 4y +
2z = 0 has normal vector
(3,2,—1) x (1,—4,2) = (0,—7,—14). Thus the equation of the plane is
—Ty — 14z = =21, that is y 4+ 2z = 3.

O

5. Find the arc-length of the curve 7(t) = (v/2t,e!,e™) when 0 < ¢ < In(2).
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Solution. Given r(t) = (/2t, ¢!, "), we have 7/(t) = (v/2,e!, —e™*) and |r/(t)| =
V2 +e 2 42t == /(e t +et)2 = ¢! + ¢'. Hence the arc-length of the curve

r(t) = <f t, et e—t> between 0 < ¢ < In(2) is fol“@)\r Bt = [ (et +
el dt et + et\ = —e M@ 4 @ — (—141) = -1 +2 =2 Note that
e ) = 61n<2) = 2

0

6. Find parametric equations for the tangent line to the curve r(t) = (t3,¢,¢3) at
the point (—1,1,—1).

Solution. Note that r(t) = (3,t,t3). We have r(—1) = (—1,1,—1). Taking
the derivative of r(t), we get r/(t) = (3t?,1,3t3). Thus the tangent vector at
t=—11isr'(—=1) = (3,1,3). Therefore parametric equations for the tangent line
isxr=—-14+3t,y=1+tand z = —1+ 3t.

U

7. Find the linear approximation of the function f(x,y,z) = /a2 +y?>+ 22 at
(1,2,2) and use it to estimate y/(1.1)2 + (2.1)2 + (1.9)2.

. . . . — z — Y
Solution. The partial derivatives are f,(x,y, 2) —m, fy(z.y, 2) vt
_ z 2
fy(z,y,2) = Vot f2(1,2,2) = 3 5 and f,(1,2,2) = 3 and f:(1,2,2) = 3
The linear approximation of f(z,y,z) at (1,2,2) is
L(z,y,2) = f(1,2,2) + fo(L,2,2)(x — 1) + f,(1,2,2)(y — 2) + f2(1,2,2)(2 — 2)
2

= 3+1($—1)+2(y—2)—|—3(z—2)

3 3
Thus L(1.1,2.1,1.9) =3+ (1.1 — 1) + 2(2.1 = 2) + 2(1.9 — 2) = 3 4 182=2 =
3+ i3 ~ 3.033. Hence /(1.1)% + (2.1)2 + (1.9)? is about 3.033.

U

8. (a) Find the equation for the plane tangent to the surface z = 32 — y* + 2z
at (1,—2,1).

(b) Find the equation for the plane tangent to the surface x? + xy? + xyz = 4
at (1,1,2).

Solution. (a) Let f(z,y) = 32* — y* 4+ 2z. We have f, = 6z + 2, f, = —2y,
f2(1,—2) = 8 and f,(1,—2) = 4. The equation of the tangent plane through
the point (1 —2,1) is
= f(1,=2) + fo(l, =2)(z — 1) + f, (1, -2)(y + 2)
=14+8x—1)+4(y+2)=8r+4y+ 1.
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(b) In general, the normal vector for the tangent plane to the level surface of
F(z,y,z) =k at the point (a, b, c) is VF(a,b,c).

The surface x2+xy?+zyz = 4 can be rewritten as F((x,y, 2) = 2?2 +xy’+ayz =
4, VF(z,y,2) = 2z + y* + yz, 2vy + 2z, zy) and
VF(1,1,2) = (5,4,1) Thus the equation of the tangent plane to the surface
1? + zy* + ryz = 4 at the point (1,1,2) is
(5,4,1) - (x — 1,y — 1, 2 — 2) = 0 which yields
bx —5+4y — 4+ 2z —2=0. It can be simplified as bx + 4y + z — 11 = 0.

O

9. Suppose that over a certain region of plane the electrical potential is given by
Viz,y) = 2% — zy + y*
(a) Find the direction of the greatest decrease in the electrical potential at the
point (1,1). What is the magnitude of the greatest decrease?
(b) Find the rate of change of V" at (1,1) in the direction (3, —4).

Solution. (a) We have
VV(z,y) = (Valz,y), Vy(2,y)) = ((2* =2y + %), (2% =2y +3°),) = 22—y, —w+2y)
Since
VVi(z,y) = (2 —y, —x + 2y)
the direction of the greatest decrease in electrical potential is
-VV(1,1)=—(1,1)
and the magnitude is —||VV(1,1)| = —v/2.

(b) The unit vector in the direction (3,—4) is @ = £(3,—4). Thus the rate of
change of V' at (1,1) in the direction (3, —4) is
1

VV(L1) i = (L1) - (3, ~4) = _%.

O

10. Find the local maxima, local minima and saddle points of the following functions.
Decide if the local maxima or minima is global maxima or minima. Explain.
(a) f(z,y) =32y +y° — 3a? — 3y°
(b) flz,y) =2" +y° — 3xy
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11.

(0.0.1)
(0.0.2)
(0.0.3)

Solution. (a) To find critical points, set f,(x,y) =12 — 6z = 0 and f,(z,y) =
6 — 2y = 0. Hence, (2,3) is the only critical point. We also have f,, = —6,

fazy = fyz = 0 and f,, = —2.
(D)= )

Since det(D*f(2,3)) = 12 > 0 and f,.(2,3) < 0, the second derivative test
implies that f has a local maximum at (2, 3). Because f is a quadratic function,
it follows the graph of f is an elliptical paraboloid and (2, 3) is a global maximum.
We can also see that f has a global maximum at (2, 3) be completing the square:

flz,y) =31=3(z —2)* = (y - 3)~.
(b) The system of equations
folz,y) =20 -3y =0 fy(z,y) = 3y* — 32 =0

implies that z = 2y and 3(y? — 2y) = 2y(y—2) = 0. Thus, (0,0) and (9/4, 3/2)
are the critical points. We also have f,, =2, f;y, = fye = —3 and f,, = 6y.

e =( % o))

Since

Det(D* f(2,y)) = fuuty — f2, = (2)(6y) — (=3)” = 12y -9,
Det(D*f(0,0)) = =9 < 0,
Det(D*f(9/4,3/2)) = 18 > 0,

the second derivative test establishes that f has a saddle point at (0,0) and a
local minimum at (9/4,3/2). Because lim, o, f(0,y) = lim, o, y* = —o0, we
see that (9/4,3/2) is not a global minimum.

O

Use Lagrange multipliers to find the maximum or minimum values of f subject
to the given constraint.
(a) flz,y,2) =2" —y* a® +y* =2

Solution. Let f(z,y) = 2® — y* and gx,y) = 2* + y* = 2. The necessary
conditions for the optimizer (z,y) are

Vf(z,y) = A\Vgz,y) and the constraint equations z* 4+ y? = 2 which are:
Since Vf(z,y) = (2x,—2y) and Vyg(z,y) = (2, 2y), thus (z,y) must sat-

isfy
20 = 2M\x
-2y = 2\y
4yt = 2
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From (4), (5) , we get 4z% + 4y? = 4\?(2? + y?). Since

22 + 3% = 2m we have A\ = 1. So A = £1. If lambda = 1, then eq(4) is
always true and we get y = 0 by eq(5). Using 22 +y? = 2, we get © = £+/2.
If lambda = —1, then eq(5) is always true and we get x = 0 by eq(4).
Using 22 + y% = 2, we get y = +£/2.

So the candidates are (v/2,0), (—=v/2,0), (0,+/2,0) and (0, /2, 0).

So F((v2,0)) = ((—v2,0)) =2 and £((0,v/2,0)) = F((0.v/2.0)) = -
Thus the maximum is 2, the minimum is —2, the maximizers are (y/2,0),

(—+/2,0), and the minimizers are (0,+/2,0) and (0, v/2,0).

O
(b) f(x,y,2) = +y+z 22 +y°+ 22 =1.
Solution. Let f(z,y,2) =x+y+ 2z and g(z,y,2) = 2% + > + 22 = 1.
We have V f(z,y,z) = (1,1,1) andVyg(z,y, z) = (2z, 2y, 22).
The necessary conditions for the optimizer (z,y, z) are
Vf(z,y,z) = AVg(x,y, z) and the constraint equations which are:
(0.0.4) 1 = 2\
(0.0.5) 1 = 2y
(0.0.6) 1 = 2X\z
(0.0.7) 24yt 4+ =1
From (7),(8) (9) and (10), we know that A\ # 0,2 = 2,y = 5; and z = 5.
Plugging into (10), we get14)\21+ =1, = Land A = jf{ . So
(CC?yaZ) :(ﬁ7ﬁ72)\)1_ (T :;T 7) (ZL’ Y, )Z((_\l/_§7_\1/_ga_7§)3
W\e/flave f((\/ga\/gu\/’))zfz\/gand f(( 7_737_75)) :_7§:
—V3.

Thus the maximizers are ( \/ig, \/Lg, \%) with maximum /3. The minimizers

are (—\/Lg, —\/Lg, —\/Lg) with minimum —+/3. O

12. Compute the followmg iterated integrals.

(a) fo fl ve_dxdy
LetD-{(x,y)h/ngxS1,0§y§1}Then0§y§:p2and0§x§1.
SoDisthesameas{(x y)\0<a:<1()<y<x2}

Wehavefoff ddy—fO xyeddx—f()Qg

19;@2
da:— dx =

2

1

—\o—

4
(b) J; f_@ eV dyda
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Solution. The region of integration is {(z,y)0 < z < 2,—v4—122 <y <
0}. The is the region in fourth quadrant. In polar coordinates, it is R =
{(r,0) :0 <r <3, <6 <0}. Wealso have 2% 4+ y* = r? and

f02 ff)m e~V dydx = f% f02 e - rdrdd

:f%_- 4

de = — (&= — LY.
8= —(5 - )

SIE
]

(C)f f&%f2+y I—I—y)dzdyda:

Solution. The region of integration is {(z,y,2)| — 1 <2z < 1,—V/1 —22 <
y < V1—22 2% +9y* <2 <2—2%—y*} In cylindrical coordinates, it is
R={(r6z2:0<r<10<60<2rr?<z<2-—r?} Recall that

T = TCOS(Q) r = rsin(@) We have (2% +y )2 =73 and
f LW f22+g; - (2* +y ) dzdydx = fo fTQ 3. rdzdrdd

2m
=)o Jo drdf

= 0% 01 r*(2 — 2r?)drdo

27 plopS
o Jo (B -

= Ji et

22
T’Z
r2

0

%.

(®13f4yf6%;Lyvﬁ+w+%mmw

Solution. In spherical coordinates, the region F = {(z,y,2)|0 < z <

VA= —2<y <2, —\/d—a? — 2 <2 <A —a? -2



Solutions for Review Problems Math 2850 Sec 4: page 8 of 14

is described by the inequalities 0 < p <2, 0 < < 7mand 0 < ¢ < 7.
Note that y = psin(¢) cos(f) Hence, the integral is

\/4 y? \/4 z2—
/ / / v’/ 12+ y2? + 22dzdxdy

4— xz—y

- /O / /0 p?sin?(6) cos2(8) (p) p%sin(9) dp 9 do

/ ﬂ / ﬂ / 2 p” sin®(¢) cos®(9) dp db) do
[ o) ([ o) ([
( /0“ 1 +cos (26) de) ( (1 — cos®(¢)) sin(e) d¢) < /0 ’ e dp)
( ., sin( 29 0) ( cos;)(qa)) ;r>

m
2

o=,

qkl\ﬂ%

w

13. Find the volume of the following regions:

(a) The solid bounded by the surface z = z1/2% + y and the planes = = 0,
r=1y=0,y=1and z =0.

Solution. The volume is fol fol x\/1% + dmdy Let u = 22 + 5. Then du =

2zdr, vdr = % and fx‘/m—da: s 5/2 Lo (x2+§/)3/2 o
o

_ (1+ )3/2 ( )3/2 201+ )o/2 2 )o/2 2(2)0/2 9 5

_fo 5/2y - y3 dr = 1? — 1’15 0_ = _E_<E_O)

_ 22 4 8v2 4 -

15 15— 15 15

(b) The solid bounded by the plane z +y+2=3,2=0,y =0 and z = 0.

Solution. The region E bounded by the zy, yz, xz planes and the plane
r+y+ z=3is the set {(x,y, JER:0<2<3,0<y<3—-2,0<2<



Math 2850 Sec 4: page 9 of 14 Solutions for Review Problems

3—x— y} The volume of FE is

[l L e [

3—z 3—z
/ / 3—x—ydy dx—/ 3y—xy——‘ dx (by substitution u=4-x-2y)
3
:/ 33—x)—x(3—x)—
0

/39 3+x2d 9z 3x2+x3
= - — 3+ —dr=—— — + —
0 2 2 2 2 6 lo

3—x—y

dy dx

(3 —x)? (z? — 62 +9)

2
3927 21 27T 9

dx

3
m::/sy4m+3—3x+ﬁ—-
0

5 2 tG6 "o

O

(c) The region bounded by the cylinder 22 + y* = 4 and the plane z = 0 and
y+z=23.
Solution. The region is bounded above by the plane z = 3 — y and below
by z = 0. In polar coordinates, this region 22 +y? < 4is R = {(r,0) : 0 <
r<20<6< 27?}. Note that z = 3 — y = 3 — rcos(f) Hence, we can
compute the volume of the region by

27 2
Volume = / / (3 —rcos(#)) rdr df
o Jo
27 2 27 9
= / / 3r —r?cos(0) dr df = / [3r7 — 4p? COS(Q)]O do
o Jo 0

27
= 6 — 8cos(0)] dfd = 12r. O
[ 1o seos0)]
0

3

14. Let C be the oriented path which is a straight line segment running from (1,1, 1)
0 (0,—1,3). Calculate [ fds where f = (z+y+ 2).

Solution.

C'is parametrized by z(t) = 1—t, y(t) = 1—2t and z(t) = 1+2t where 0 < ¢t < 1.
W@hm@f(()() () =xt)+ylt) +2()=1—t+1—-2t+1+2t=3—1
and ds = \/2/(t)2 +y/ ()2 + 2/(t)2dt = \/(—1)? + (—2)2 + 22dt = /9dt = 3dLt.
So [, fds = [} (3 —tﬁ 3t—L)i=3.

0=
U
15. Calculate the following line integrals |, F . dr
(a) F = ysin(zy)i + zsin(zy)] and C is the parabola y = 222 from (1,2) to
(3,18).
(b) F=2zi — 4yj + (22 — 3)E and C' is the line from (1,1,1) to (2,3, —1).
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Solution.

(a) If f(x,y) = —cos(zy) then Vf = ysin(zy)i + zsin(zy)j = F'. Hence, the
Fundamental Theorem for line integrals implies that

/Cﬁ -dF = f(3,18) — f(1,2) = cos(2) — cos(54) .

(b) If f(z,y,2) = a2 — 2y® + 22 — 3z then Vf = 2zi — 4yj + (22 — 3)k = F.
Hence, the Fundamental Theorem for line integrals implies that

/ﬁ-dF:f(Q,B,—l)—f(l,l,l):—10+3:—7. O
C

16. Calculate the circulation of F around the given paths.

(a) F = :L’yj around the square 0 < z < 1, 0 < y < 1 oriented counterclock-
wise.

(b) F = (222+3y)i+ (22+3y>)] around the triangle with vertices (2, 0), (0, 3),
(—2,0) oriented counterclockwise.
(c) F= By;—i- q:yj’ around the unit circle oriented counterclockwise.

d) F = zzi + (x +y2)j + 22k and C is the circle 22 + y2 = 1, z = 2 oriented
Yyz)j Yy
counterclockwise when viewed from above.

Solution.

(a) f R={(z,y) : 0 <2 <1,0 <y <1} then Green’s Theorem implies that

[ (25 E) 1= [ [osnie=([ ) ([ ) -1

(b) If T is the triangle with vertices (2, 0), (0, 3), (—2,0) then Green’s Theorem
gives

, oF, OF, 1
F.df:/(———) dA:/Q—SdA:—AreaT = ——(4)(3) = —6.
/E)T By i (1) = =5(4)B)

(c) If D is the unit disk then Green’s Theorem yields

[ Foar= [ (522 aa= [y-saa= [ yar-s [ aw=sn
oD p\O0x Oy D D D

Indeed, the function f(z,y) = y is symmetry about the origin [which means

f(=z,—y) = —f(z,y)] so the integral of f(x,y) over D is zero.
(d) If S is the disk given by 22 + y*> < 1 and z = 2 oriented upwards then
i j k
dS = C. Since Vx F = det [ i aé; %] = —yz+x]+k, Stokes’ Theorem

Tz T+Yyz x?

implies that

/ﬁ-df:/(v><ﬁ)-dﬁ:/(—yfmxﬂl%’).EdA:Area(S):w. O
oS S S
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17. Calculate the area of the region within the ellipse 2?/a? + y?/b* = 1 parameter-
ized by = acos(t), y = bsin(t) for 0 <t < 2.

Solution. If R is region in the plane and F= 2] then Green’s Theorem implies
that Area(R) = [, dA = [, <8F2 — 8F1> dA = faRF dr. Using this idea, we

can calculate the area of the region enclosed by the given parameterized curves.
For the ellipse, we have

2w 2m
Area = / Fdr= / acos(t)bcos(t) dt = ab/ cos?(t) dt
OR 0 0

1 ]
= ab {— cos(t) sin(t) + 5] = abr. O
0

18. Compute the flux of the vector field F through the surface S.

(a) F = zi+ yj and S is the part of the surface z = 25 — (22 4 42) above the
disk of radius 5 centered at the origin oriented upward.

(b) F = —yi+zk and S is the part of the surface z = 42 +5 over the rectangle
-2< T < 1, 0 <y <1 oriented upward.

(c) F=uyi +j — 22k and S is the surface y = 22+ 2% with 22 + 2% < 1 oriented
in the positive y-direction.

(d) F = 2% + (y — 2zy)] + 10zk and S is the sphere of radius 5 centered at
the origin oriented outward.

(e) F = —zi+ zk and S is a square pyramid with height 3 and base on the
xy-plane of side length 1.

(f) F =yj and S is a closed vertical cylinder of height 2 with its base a circle
of radius 1 on the zy-plane centered at the origin.

Solution. . . .
(a) The surface S is given by 7(s,t) = scos(t)t + ssin(t)j + (25 — s*)k for
0<s<5, 0<t< 27 Since

or or i j k - - -
s X i =det | cos(t) sin(t) —2s| = 2s*cos(t)i + 2s*sin(t)j + sk,
—ssin(t) scos(t) 0
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we have

- mort or or
/SF-dA—/O /OF(r(s,t))-(£XE> ds dt

5
= / / (s cos(t)i + s Sin(t)j) - (25° cos(t)i + 25 sin(t)] + sk) ds dt

2m
/ / 2s% cos?(t) + 2s° sin(t) ds dt
2m
/ /25 ds dt =27 {— = 725m.
lo

(b) The surface S is given by (s, 1)
O<t<181nce—><——det i
0

= si+tj+ (24 5)k for =2 < s < 1,
= —2t;’+ lg, we have

o =

—O%.
[\~}

t

or or

:/ /(_tz+ (2 + 5)K) - (~2t + F) dt ds

1 1
z/ /t2+5dtds
—-2J0
1 1 1
—(/ ds) (/ t2+5dt)—3[§t3+5t}0—16.
-2 0

(¢) The surface S is given by 7(s, ) = s cos(t)i + 52 4 ssin(t)k for 0 < s < 1,
0 <t < 2w Since

or or ! J K - = —
5 " 95 = det | —ssin(t) 0 scos(t)| = —2s*cos(t)i + sj — 2s*sin(t)k

cos(t) 2s sin(t)

we have

= Lt or  or
/SF-dA—// F(r(s,t))-(axg) ds dt

/ / s%1 + J — s2sin(t) cos(t)/;) - (—25° cos(t)i + sj — 2s° sin(t)l;) dt ds

0 0

/ / —2s5* cos(t) + s + 2s* sin®(t) cos(t) dt ds

0 0

2
/ { 25* sin(t —|—st—1—33 smg(t)}

0

2

1
ds:/ 2rs ds = .
0 0
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(d) If D is the ball of radius 5 centered at the origin then 9D = S. The
Divergence Theorem implies that

95007

/ ﬁ-dﬁ-/(v'ﬁ)dv—/2x+(1—2x)—|—10d‘/—11~Volume(B)— :
oD D D 3

(e) If P is the solid square pyramid with height 3 and base on the zy-plane of
side length 1 then P = S. Hence, the Divergence Theorem gives:

/ F-d/fz/(V-ﬁ)de/OdeO.
oP P P

(f) If W is the solid vertical cylinder of height 2 with its base a circle of radius
1 on the zy-plane centered at the origin then OW = S. Applying the
Divergence Theorem yields

/ ﬁ-dﬁ—/(v-ﬁ)dv—/ 1 dV = Volume(W) = 27 O
ow w w

19. Let F = (8yz — 2)j + (3 — 422)k.
(a) Show that G = 4yz% + 3zj + zzk is a vector potential for F.
(b) Evaluate |, sﬁ - dA where S is the upper hemisphere of radius 5 centered
at the origin oriented upwards.

Solution.

Eal!

i

(a) Since V x G = det [ 2 8% %] = (8yz—2)j + (3—422)k = F, we see that

dyz? 3z xz
G is a vector potential for F.

(b) If C is the circle of radius 5 in the xy-plane centered at the origin oriented
counterclockwise when viewed from above, then 05 = C'. Hence, Stoke’s
Theorem implies that [, F-dA = [((VxG)-dA = [.,G-dF. Since C can
be parameterized by 7(t) = 5 cos(t)i 4+ 5sin(t) for 0 < t < 27, we have

/SF-dA:/CG-dF:/O G(r(t)) - 7'(t) dt
= /0 (15 cos(t)f) (=5 sin(t)i + 5cos(t)j) dt

2

2w 1 t
= 75/ cos?(t) dt = 75 [— cos(t)sin(t) + =| = T757.
0 2 2o

Alternatively, let D be the disk of radius 5 in the xy-plane centered at
the origin oriented upwards. Hence, 0D = C' = 0S and Stoke’s Theorem
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implies that

/ﬁdﬁ:/(Vxé).M:/é-df:/(Vxé)-dZ
S S C D
:/ﬁ-dff:/ﬁ-EdA:/(3—4(0)2)dA:3-Area(D):757r. 0
D D D

20. For constants a, b, ¢ and m consider the vector field
F = (az +by +52)i + (x + c2)j + 3y + ma)k.
(a) Suppose that the flux of F through any closed surface is 0. What does this
tell you about the values of the constants a, b, ¢, m?
(b) Suppose instead that the circulation of F' around any closed curve is 0.
What does this tell you about the values of the constants a, b, ¢, m?

Solution. .
(a) Let W be any solid region in 3-space. Since the flux of F' through any
closed surface is 0 the Divergence Theorem implies that

0:/ ﬁ-dﬁ:/ V- -FdV.
ow W

By choosing W to be a sequence of balls centered at (x,y, z) that con-
tract down to (x,y, z) in the limit, we deduce that V - F' = 0 everywhere.

—

However, V - F' = a which means a = 0.
(b) Let S be any smooth oriented surface with piecewise smooth boundary.

Since the circulation of F around any closed curve is 0, Stokes’” Theorem
implies that 0 = [, F-di = [((V x F)- dA. By choosing S be to a small
disk perpendicular to the curl of F at (x,y, z), we deduce that V x F=0.
However, we have

i 7 k
V x F = det 2 Z 2 I =B-ci+(B-mj+1-0bk

ar +by+5z x+cz 3y+mx
which means that b =1, ¢ =3 and m = 5. 0



