Solution for Review Problems I

MATH 2850-004

The detail of the information about the first midterm can be found at http://www.math.utoledo.edu/~mtsui/calc06sp/exam/midterm1.html

The first midterm will cover $13.1,13.2,13.3,13.4$ and 13.5.
The first midterm will be held on Feb. 1 (Wednesday) in class.
My office hours next week(exam week) is Monday 1-3 p.m., Tuesday 121:45 p.m. and Wednesday 1-3 p.m.
(1) Let $\overrightarrow{F_{3}}$ denote third force applied to the object. Since object is to remain stationary, the total force on it must be zero: $\overrightarrow{F_{1}}+\overrightarrow{F_{2}}+\overrightarrow{F_{3}}=\overrightarrow{0}$. Hence, we have $\overrightarrow{F_{3}}=-\overrightarrow{F_{1}}-\overrightarrow{F_{2}}=-11 \vec{i}+4 \vec{j}$.
(2) (a) We want to find r and s such that $<2,1>=r<1,2>+s<1,-1>$. Since $r<1,2>+s<1,-1>=<r+s, 2 r-s>$, we have $r+s=2$ and $2 r-s=1$ by comparison the coefficient in each component of the vector. It follows that $r=1$ and $s=1$.
(b) The set of vectors are those vectors whose starting points are origin and whose end points lie in the parallelogram spanned by $\{-2 \vec{u}+\vec{v},-2 \vec{u}+\overrightarrow{2 v},-\vec{u}+\vec{v},-\vec{u}+2 \vec{v}\}$.
(c) The set of vectors are those vectors whose starting points are origin and whose end points lie on the line between $2 \vec{u}$ and $2 \vec{u}+\frac{2}{3} \vec{v}$.
(3) (a) Using $A=(2,2,2), B=(4,2,1)$ and $C=(2,3,1)$, We have $\overrightarrow{A B}=<$ $2,0,-1>, \overrightarrow{A C}=<0,1,-1>$ and $\overrightarrow{B C}=<-2,1,0\rangle$.
The length of the sides of S are:

$$
\begin{aligned}
& \|\overrightarrow{A B}\|=\sqrt{2^{2}+\left(0^{2}+(-1)^{2}\right.}=\sqrt{5}, \\
& \|\overrightarrow{A C}\|=\sqrt{(0)^{2}+(1)^{2}+(-1)^{2}}=\sqrt{2}, \\
& \|\overrightarrow{B C}\|=\sqrt{(-2)^{2}+(1)^{2}+(0)^{2}}=\sqrt{5} .
\end{aligned}
$$

(b) Let θ be the angle $B A C$ at vertex A.

We have $\cos (\theta)=\frac{\overrightarrow{A B} \cdot \overrightarrow{A C}}{\|\overrightarrow{A B}\| \cdot\|\overrightarrow{A C}\|}=\frac{\langle 2,0,-1>\cdot<0,1,-1\rangle}{\sqrt{5} \cdot \sqrt{2}}=\frac{1}{\sqrt{10}}$.
(c) First we find

$$
\begin{gathered}
\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
2 & 0 & -1 \\
0 & 1 & -1
\end{array}\right| \\
=\left|\begin{array}{cc}
0 & -1 \\
1 & -1
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
2 & -1 \\
0 & 1
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
2 & 0 \\
0 & 1
\end{array}\right| \vec{k}=\vec{i}+2 \vec{j}+2 \vec{k}=<1,2,2> \\
\text { page } 1 \text { of } 5
\end{gathered}
$$

Thus the area of the triangle $A B C=\frac{1}{2}\|\overrightarrow{A B} \times \overrightarrow{A C}\|=\frac{1}{2} \sqrt{2^{2}+2^{2}+1}=\frac{3}{2}$.
(d) The vector $\overrightarrow{A B} \times \overrightarrow{A C}=<1,2,2>$ is perpendicular to the plane that contains the points A, B and C.
(e) Using $D=(3,1,1)$, we have $\overrightarrow{A D}=<1,-1,-1>$, Thus $(\overrightarrow{A B} \times \overrightarrow{A C}) \cdot \overrightarrow{A D}=<$ $1,2,2>\cdot<1,-1,-1>=-2 \neq 0$. Hence A, B, C and D are not on the same plane.
(f) Using $E=(6,3,-1)$, we have $\overrightarrow{A E}=<4,-1,-3>$, Thus $(\overrightarrow{A B} \times \overrightarrow{A C}) \cdot \overrightarrow{A E}=<$ $1,2,2>\cdot<4,-1,-3>=0$. Hence A, B, C and D are on the same plane.
(g) The volume of the parallelepiped formed by $\overrightarrow{A B}, \overrightarrow{A C}$ and $\overrightarrow{A D}$ $=|(\overrightarrow{A B} \times \overrightarrow{A C}) \cdot \overrightarrow{A D}|=|-2|=2$.
(4) Since the geometric definition of the cross product implies that $\|\vec{v} \times \vec{w}\|=$ $\|\vec{v}\|\|\vec{w}\| \sin (\theta)$ and the geometric definition of the dot product states that $\vec{v} \cdot \vec{w}=\|\vec{v}\|\|\vec{w}\| \cos (\theta)$, we have

$$
\tan (\theta)=\frac{\sin (\theta)}{\cos (\theta)}=\frac{\|\vec{v} \times \vec{w}\|}{\vec{v} \cdot \vec{w}}=\frac{\sqrt{(2)^{2}+(-3)^{3}+(5)^{2}}}{3}=\frac{\sqrt{38}}{3} .
$$

(5) Show that the vectors $(\vec{b} \cdot \vec{c}) \vec{a}-(\vec{a} \cdot \vec{c}) \vec{b}$ and \vec{c} are perpendicular.

Since

$$
\begin{aligned}
((\vec{b} \cdot \vec{c}) \vec{a}-(\vec{a} \cdot \vec{c}) \vec{b}) \cdot \vec{c} & =(\vec{b} \cdot \vec{c})(\vec{a} \cdot \vec{c})-(\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{c}) \\
& =(\vec{b} \cdot \vec{c})(\vec{a} \cdot \vec{c})-(\vec{b} \cdot \vec{c})(\vec{a} \cdot \vec{c})=0,
\end{aligned}
$$

we conclude that $(\vec{b} \cdot \vec{c}) \vec{a}-(\vec{a} \cdot \vec{c}) \vec{b})$ and \vec{c} are perpendicular to each other.
(6) The projection formula implies that the component of the wind parallel to the dash is
$\operatorname{Proj}_{\vec{v}} \vec{w}=\frac{\vec{w} \cdot \vec{v}}{\|\vec{v}\|^{2}} \vec{v}=\frac{16}{40}(2 \vec{i}+6 \vec{j})=\frac{4}{5} \vec{i}+\frac{12}{5} \vec{j}$ and its magnitude is $\left\|\operatorname{Proj}_{\vec{v}} \vec{w}\right\|=$ $\sqrt{\left(\frac{4}{5}\right)^{2}+\left(\frac{12}{5}\right)^{2}}=\frac{\sqrt{160}}{5}$. Since $\frac{\sqrt{160}}{5}<5$, we have $\left\|\operatorname{Proj}_{\vec{v}} \vec{w}\right\|<5$. Therefore, the wind speed measured in the direction of the dash is less than $5 \mathrm{~km} h^{-1}$ and the race results will not be disqualified due to an illegal wind.
(7) (a) $\theta=\frac{\pi}{2}$.
(b) $0 \leq \theta<\frac{\pi}{2}$.
(c) $\frac{\pi}{2}<\theta \leq \pi$.
(d) $\theta=0$ or $\theta=\pi$.
(8) (a) Let $P=(2,4,1)$ and $Q=(4,5,3)$. The direction of the line is $\overrightarrow{P Q}=<$ $4-2,5-4,3-1\rangle=<2,1,2>$. The vector equation is $\langle x, y, z\rangle=<$ $2,4,1>+t<2,1,2>$ or $x=2+2 t, y=4+t$ and $z=1+2 t$.
(b) (i) The direction of the line determined by $(13,14,12)$ and $(12,12,11)$ is $<-1,2,1\rangle$ which is not parallel to $\langle 2,1,2\rangle$.
(ii) The direction of the line determined by $(7,8,6)$ and $(8,8,7)$ is $<$ $1,0,1>$ which is not parallel to $\langle 2,1,2\rangle$.
(iii) The direction of the line determined by $(9,10,8)$ and $(13,12,12)$ is $<4,2,4>=2<2,1,2>$ which is parallel to $\langle 2,1,2\rangle$.
(c) The direction of the line is $\overrightarrow{P Q}=<4-2,5-4,3-1>=<2,1,2>$. The starting point of the line is $(1,1,1)$. So the equation of the line is $x=1+2 t, y=1+t$ and $z=1+2 t$.
(d) The direction of the line $\frac{x-2}{2}=-\frac{y}{1}=\frac{z-2}{2}$ is $\left.<2,-1,2\right\rangle$. The starting point of the line is $(1,1,1)$. So the equation of the line is $x=1+2 t$, $y=1-t$ and $z=1+2 t$.
(9) (a) (i) Method 1. Since the graph of the linear function intersects the $x z$ plane along the line $z=2 x-3$, we know it has the form $2 x+c y-z-3=0$ for some constant c. Moreover, the point $(1,2,1)$ lies on the plane if and only $2+c(2)-1-3=0$ which means $c=1$. Therefore, the required equation is $2 x+y-z-3=0$.
(ii) Method 2. We can find two points on the $x-z$ plane with $z=2 x-3$. Choosing $x=0$ and $x=1$, we get $(0,0,-3)$ and $(1,0,-1)$. Thus $P=$ $(1,2,1), Q=(0,0,-3)$ and $R=(1,0,-1)$ determine a plane. A normal vector is $\vec{n}=\overrightarrow{P Q} \times \overrightarrow{P R}=<-1,-2,-4>\times<0,-2,-2>$

$$
=\langle | \begin{array}{ll}
-2 & -4 \\
-2 & -2
\end{array}\left|,-\left|\begin{array}{cc}
-1 & -4 \\
0 & -2
\end{array}\right|,\left|\begin{array}{cc}
-1 & -2 \\
0 & -2
\end{array}\right|\right\rangle=<-4,-2,2>.
$$

The equation of the plane is determined by a point $P=(1,2,1)$ and the normal vector $<-4,-2,2>$. This gives $<x-1, y-2, z-1>\cdot<$ $-4,-2,2>=0$. We get $-4 x-2 y+2 z+4+4-2=0$ which can be simplified as $2 x+y-z-3=0$.
(b) The equation of the plane with normal vector $\vec{i}-\vec{j}+\vec{k}$ and passing through the point $(1,1,1)$ is

$$
\langle 1,-1,1\rangle \cdot\langle x-1, y-1, z-1\rangle=(x-1)-(y-1)+(z-1)=0 \text { or } x-y+z=1 .
$$

(c) Let θ be the angle between the planes defined by $3 x+2 y-z=7$ and $x-4 y+2 z=0$.
We have $\cos (\theta)=\frac{\langle 3,2,-1\rangle \cdot\langle 1,-4,2\rangle}{\|\langle 3,2,-1\rangle\|\|\langle 1,-4,2\rangle\|}=\frac{-7}{\sqrt{14} \sqrt{21}}=\frac{-1}{\sqrt{6}}$ and $\theta=\arccos \left(\frac{-1}{\sqrt{6}}\right)$.
(d) The plane that is perpendicular to the planes $3 x+2 y-z=7$ and $x-4 y+2 z=0$ has normal vector
$\langle 3,2,-1\rangle \times\langle 1,-4,2\rangle=\langle 0,-7,-14\rangle$. Thus the equation of the plane is $-7 y-14 z=-21$, that is $y+2 z=3$.
(10) (a) The distance between the point $(1,2,3)$ and the plane $2 x-2 y+z=7$ is $\frac{|2 \cdot 1-2 \cdot(2)+3-7|}{\sqrt{2^{2}+(-2)^{2}+(1)^{2}}}=\frac{|-6|}{3}=2$.
(b) The plane $4 x-2 y+4 z=7$ can be rewritten as $2 x-y+2 z=\frac{7}{2}$. Using the distance formula between planes, the distance between P_{1} and P_{2} is $\frac{\left|10-\frac{7}{2}\right|}{\sqrt{2^{2}+2^{2}+(-1)^{2}}}=\frac{13}{6}$.
(c) A plane P is drawn through the points $A=(1,-1,0), B=(0,1,-1)$ and $C=(1,0,-1)$. Find the distance between the plane P and the point $(1,1,1)$.

The vectors

$$
\begin{aligned}
& \overrightarrow{A B}=(0-1) \vec{i}+(1+1) \vec{j}+(-1-0) \vec{k}=-\vec{i}+2 \vec{j}-\vec{k} \text { and } \\
& \overrightarrow{A C}=(1-1) \vec{i}+(0+1) \vec{j}+(-1-0) \vec{k}=\vec{j}-\vec{k}
\end{aligned}
$$

both lie in the plane. Hence, the vector

$$
\overrightarrow{A B} \times \overrightarrow{A C}=\operatorname{det}\left[\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
-1 & 2 & -1 \\
0 & 1 & -1
\end{array}\right]=-\vec{i}-\vec{j}-\vec{k}
$$

is perpendicular to the plane and the equation of the plane is

$$
-1(x-1)-1(y+1)-1(z-0)=0 \quad \text { or } \quad x+y+z=0 .
$$

The distance between the plane P and the point $(1,1,1)$ is $\sqrt{3}$.
(11) Section 12.7 will not be in the test.
(12) The sphere $(x-2)^{2}+(y-1)^{2}+(z+1)^{2}=4$ has its center at $C=(2,1,-1)$ with radius 2 . Thus the distance between the center and the plane P_{1} :
$2 x+2 y-z=1$ is $\frac{|2 \cdot 2+2 \cdot 1-(-1)-1|}{\sqrt{2^{2}+2^{2}+(-1)^{2}}}=\frac{6}{3}=2$ which equals to the radius of the sphere. Thus the plane P_{1} intersects the sphere at one point.

The distance between the center and the plane $P_{2}: 2 x+2 y-z=-1$ is $\frac{|2 \cdot 2+2 \cdot 1-(-1)-(-1)|}{\sqrt{2^{2}+2^{2}+(-1)^{2}}}=\frac{8}{3}$ which is greater than the radius of the sphere. Thus the plane P_{2} doesn't intersect the sphere.

The distance between the center and the plane $P_{3}: 2 x-y+2 z=4$ is $\frac{|2 \cdot 2+2 \cdot 1-(-1)-(4)|}{\sqrt{2^{2}+2^{2}+(-1)^{2}}}=\frac{3}{3}=1$ which is smaller than the radius of the sphere. Thus the intersection of the plane P_{3} with the plane is a circle with radius $\sqrt{3^{2}-1^{2}}=\sqrt{8}$.

