Review Problems for Midterm II

MATH 2850 - 004

The detail of the information about the second midterm can be found at http://www.math.utoledo.edu/~mtsui/calc06sp/exam/midterm2.html You should also review the homework and quiz problems to prepare for the midterm.

This midterm will cover 13.7, Chapter 14 and 15.1-15.7.

(1) (a) Change each of the following points from rectangular coordinates to cylindrical coordinates and spherical coordinates:

$$(2, -1, 2), (2, -2, -3).$$

- (b) Convert the equation $\cos(\phi) = \sin(\theta)$ into rectangular coordinates.
- (c) Convert the equation $r \cos(\theta) = z$ into rectangular coordinates.
- (2) Find the arc-length of the curve $r(t) = \langle 2t, e^t, e^{-t} \rangle$ when $0 \le t \le \ln(2)$.
- (3) (a) Find parametric equations for the tangent line to the curve $r(t) = \langle t^3, t, t^3 \rangle$ at the point (-1, 1, -1).
 - (b) At what point on the curve $r(t) = \langle t^3, t, t^3 \rangle$ is the normal plane (this is the plane that is perpendicular to the tangent line) parallel to the plane 24x + 2y + 24z = 3?
- (4) Find the unit tangent, unit normal, binormal vectors and curvature of the curve $r(t) = \langle 4t, \cos(3t), \sin(3t) \rangle$.
- (5) Find the linear approximation of the function $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ at (1, 2, 2) and use it to estimate $\sqrt{(1.1)^2 + (2.1)^2 + (1.9)^2}$.
- (6) (a) Find the equation for the plane tangent to the surface $z = 3x^2 y^2 + 2x$ at (1, -2, 1).
 - (b) Find the equation for the plane tangent to the surface $x^2 + xy^2 + xyz = 4$ at (1, 1, 2).
 - (c) Find the equation for the line normal to the surface $x^2 + xy^2 + xyz = 4$ at (1, 1, 2).
 - (d) Find the points on the sphere $x^2 + y^2 + z^2 = 1$ where the tangent plane is parallel to the plane 2x + y 3z = 2.
 - (e) Find the points on the sphere $(x + 1)^2 + (y 1)^2 + z^2 = 1$ where the tangent plane is parallel to the plane 2x + 2y z = 1.

- (7) Find the domain and first partial derivatives of the following functions. (a) $f(s,t) = (s^2 + t^2) \sin(s^2 - t^2)$.
 - (b) $g(x,y) = \frac{2x-3y}{x+2y}$.
 - (c) $h(x,y) = \ln(\frac{x+y}{x-y})$.

(d)
$$k(x,t) = \frac{(3x+4t)e^{(x^2-t^2)}}{x^2+t^2}$$
.

- (8) (a) Verify that $u = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$ is a solution of $u_{xx} + u_{yy} + u_{zz} = 0$.
 - (b) Show that v(x,t) = f(x+2t) + g(x-2t) is a solution of the wave equation $v_{tt} = 4v_{xx}$.
- (9) Use implicit differentiation to find z_x and z_y if $xyz = e^{x^2 + y^2 + z^2}$.
- (10) Suppose that over a certain region of plane the electrical potential is given by $V(x, y) = x^2 xy + y^2$.
 - (a) Find $\nabla V(x, y)$.
 - (b) Find the direction of the greatest decrease in the electrical potential at the point (1,1). What is the magnitude of the greatest decrease?
 - (c) Find the direction of the greatest increase in the electrical potential at the point (1, 1). What is the magnitude of the greatest increase?
 - (d) Find a direction at the point (1,1) in which the temperature does not increase or decrease.
 - (e) Find the rate of change of V at (1,1) in the direction $\langle 3, -4 \rangle$.
- (11) Find the local maxima, local minima and saddle points of the following functions. Decide if the local maxima or minima is global maxima or minima. Explain.
 - (a) $f(x,y) = 3x^2y + y^3 3x^2 3y^2$
 - (b) $f(x,y) = x^2 + y^3 3xy$
 - (c) $f(x,y) = xy + \ln(x) + y^2 10, x > 0$
- (12) Find rigorously the global maximum/minimum and global maximizer/minimizer of the following functions subject to the given constraint.
 - (a) $f(x,y) = x^2y^2 2x 2y, 0 \le x \le 1$ and $0 \le y \le 1$.
 - (b) $f(x,y) = x^2y^2 2x 2y, 0 \le x, 0 \le y \text{ and } x + y \le 1.$