Review Problems for Midterm II

MATH 2850-004

The detail of the information about the second midterm can be found at http://www.math.utoledo.edu/~mtsui/calc06sp/exam/midterm2.html You should also review the homework and quiz problems to prepare for the midterm.
This midterm will cover 13.7, Chapter 14 and 15.1-15.7.
(1) (a) Change each of the following points from rectangular coordinates to cylindrical coordinates and spherical coordinates:

$$
(2,-1,2),(2,-2,-3) .
$$

(b) Convert the equation $\cos (\phi)=\sin (\theta)$ into rectangular coordinates.
(c) Convert the equation $r \cos (\theta)=z$ into rectangular coordinates.
(2) Find the arc-length of the curve $r(t)=\left\langle 2 t, e^{t}, e^{-t}\right\rangle$ when $0 \leq t \leq \ln (2)$.
(3) (a) Find parametric equations for the tangent line to the curve $r(t)=$ $\left\langle t^{3}, t, t^{3}\right\rangle$ at the point $(-1,1,-1)$.
(b) At what point on the curve $r(t)=\left\langle t^{3}, t, t^{3}\right\rangle$ is the normal plane (this is the plane that is perpendicular to the tangent line) parallel to the plane $24 x+2 y+24 z=3$?
(4) Find the unit tangent, unit normal, binormal vectors and curvature of the curve $r(t)=\langle 4 t, \cos (3 t), \sin (3 t)\rangle$.
(5) Find the linear approximation of the function $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$ at $(1,2,2)$ and use it to estimate $\sqrt{(1.1)^{2}+(2.1)^{2}+(1.9)^{2}}$.
(6) (a) Find the equation for the plane tangent to the surface $z=3 x^{2}-y^{2}+2 x$ at $(1,-2,1)$.
(b) Find the equation for the plane tangent to the surface $x^{2}+x y^{2}+x y z=4$ at $(1,1,2)$.
(c) Find the equation for the line normal to the surface $x^{2}+x y^{2}+x y z=4$ at $(1,1,2)$.
(d) Find the points on the sphere $x^{2}+y^{2}+z^{2}=1$ where the tangent plane is parallel to the plane $2 x+y-3 z=2$.
(e) Find the points on the sphere $(x+1)^{2}+(y-1)^{2}+z^{2}=1$ where the tangent plane is parallel to the plane $2 x+2 y-z=1$.
(7) Find the domain and first partial derivatives of the following functions.
(a) $f(s, t)=\left(s^{2}+t^{2}\right) \sin \left(s^{2}-t^{2}\right)$.
(b) $g(x, y)=\frac{2 x-3 y}{x+2 y}$.
(c) $h(x, y)=\ln \left(\frac{x+y}{x-y}\right)$.
(d) $k(x, t)=\frac{(3 x+4)\left(e^{\left(x^{2}-t^{2}\right)}\right.}{x^{2}+t^{2}}$.
(8) (a) Verify that $u=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ is a solution of $u_{x x}+u_{y y}+u_{z z}=0$.
(b) Show that $v(x, t)=f(x+2 t)+g(x-2 t)$ is a solution of the wave equation $v_{t t}=4 v_{x x}$.
(9) Use implicit differentiation to find z_{x} and z_{y} if $x y z=e^{x^{2}+y^{2}+z^{2}}$.
(10) Suppose that over a certain region of plane the electrical potential is given by $V(x, y)=x^{2}-x y+y^{2}$.
(a) Find $\nabla V(x, y)$.
(b) Find the direction of the greatest decrease in the electrical potential at the point $(1,1)$. What is the magnitude of the greatest decrease?
(c) Find the direction of the greatest increase in the electrical potential at the point $(1,1)$. What is the magnitude of the greatest increase?
(d) Find a direction at the point $(1,1)$ in which the temperature does not increase or decrease.
(e) Find the rate of change of V at $(1,1)$ in the direction $\langle 3,-4\rangle$.
(11) Find the local maxima, local minima and saddle points of the following functions. Decide if the local maxima or minima is global maxima or minima. Explain.
(a) $f(x, y)=3 x^{2} y+y^{3}-3 x^{2}-3 y^{2}$
(b) $f(x, y)=x^{2}+y^{3}-3 x y$
(c) $f(x, y)=x y+\ln (x)+y^{2}-10, x>0$
(12) Find rigorously the global maximum/minimum and global maximizer/minimizer of the following functions subject to the given constraint.
(a) $f(x, y)=x^{2} y^{2}-2 x-2 y, 0 \leq x \leq 1$ and $0 \leq y \leq 1$.
(b) $f(x, y)=x^{2} y^{2}-2 x-2 y, 0 \leq x, 0 \leq y$ and $x+y \leq 1$.

