## Solution to Review Problems for Midterm II

## MATH 2850-004

(1) (a) Change each of the following points from rectangular coordinates to cylindrical coordinates and spherical coordinates:

$$
(2,-1,2),(2,-2,-3) .
$$

(b) Convert the equation $\cos (\phi)=\sin (\theta)$ into rectangular coordinates.
(c) Convert the equation $r \cos (\theta)=z$ into rectangular coordinates.

Solution. (a) $(2,-1,-2)$ : Since $r=\sqrt{x^{2}+y^{2}}=\sqrt{2^{2}+(-1)^{2}}=\sqrt{5}$ and $\tan \theta=$ $\frac{y}{x}=\frac{-1}{2}$, the point in cylindrical coordinates is $\left(\sqrt{5}, 2 \pi-\arctan \left(\frac{1}{2}\right),-2\right)$. Similarly,

$$
\rho=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{2^{2}+(-1)^{2}+(-2)^{2}}=3
$$

$\tan \theta=\frac{y}{x}=-\frac{1}{2}$ and $\cos \phi=\frac{z}{\rho}=\frac{2}{3}$ so the point in spherical coordinates is $\left(3,2 \pi-\arctan \left(\frac{1}{2}\right), \arccos \left(\frac{2}{3}\right)\right)$.
$(2,-2,-3)$ : Since $r=\sqrt{x^{2}+y^{2}}=\sqrt{2^{2}+(-2)^{2}}=\sqrt{8}$ and $\tan \theta=\frac{y}{x}=$ $\frac{-2}{2}=-1$, the point in cylindrical coordinates is $(\sqrt{5}, 2 \pi-\arctan (1),-3)=$ ( $\sqrt{5}, \frac{7}{4} \pi,-3$ ). Similarly,

$$
\rho=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{2^{2}+(-2)^{2}+(3)^{2}}=\sqrt{17}
$$

$\tan \theta=\frac{y}{x}=-1$ and $\cos \phi=\frac{z}{\rho}=\frac{-2}{\sqrt{17}}$ so the point in spherical coordinates is $\left(\sqrt{17}, \frac{7}{4} \pi, \pi-\arccos \frac{2}{\sqrt{17}}\right)$.
(b) Since $\cos (\phi)=\frac{z}{\rho}=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}, \sin (\theta)=\frac{y}{\rho \sin (\phi)}$
$=\frac{y}{\sqrt{x^{2}+y^{2}+z^{2}} \sqrt{1-\cos (\phi)^{2}}}=\frac{y}{\sqrt{x^{2}+y^{2}+z^{2}} \sqrt{1-\frac{z^{2}}{x^{2}+y^{2}+z^{2}}}}=\frac{y}{\sqrt{x^{2}+y^{2}}}$. The equation $\cos (\phi)=$ $\sin (\theta)$ is $\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{y}{\sqrt{x^{2}+y^{2}}}$ in rectangular coordinates.
(c) Since $y=r \cos (\theta)$, the equation $r \cos (\theta)=z$ is $y=z$ in rectangular coordinates.
(2) Find the arc-length of the curve $r(t)=\left\langle\sqrt{2} t, e^{t}, e^{-t}\right\rangle$ when $0 \leq t \leq \ln (2)$. (There is a typo in the original problem. $r(t)$ should be $\left\langle\sqrt{2} t, e^{t}, e^{-t}\right\rangle$.)
Solution. Given $r(t)=\left\langle\sqrt{2} t, e^{t}, e^{-t}\right\rangle$, we have $r^{\prime}(t)=\left\langle\sqrt{2}, e^{t},-e^{-t}\right\rangle$ and $\left|r^{\prime}(t)\right|=$ $\sqrt{2+e^{-2 t}+e^{2 t}}=\sqrt{\left(e^{-t}+e^{t}\right)^{2}}=e^{-t}+e^{t}$. Hence the arc-length of the curve $r(t)=\left\langle\sqrt{2} t, e^{t}, e^{-t}\right\rangle$ between $0 \leq t \leq \ln (2)$ is $\int_{0}^{\ln (2)}\left|r^{\prime}(t)\right| d t=\int_{0}^{\ln (2)}\left(e^{-t}+e^{t}\right) d t=$ $-e^{-t}+\left.e^{t}\right|_{0} ^{\ln (2)}=-e^{-\ln (2)}+e^{\ln (2)}-(-1+1)=-\frac{1}{2}+2=\frac{3}{2}$. Note that $e^{-\ln (2)}=$ $\frac{1}{e^{\ln (2)}}=\frac{1}{2}$.
(3) (a) Find parametric equations for the tangent line to the curve $r(t)=$ $\left\langle t^{3}, t, t^{3}\right\rangle$ at the point $(-1,1,-1)$.
(b) At what point on the curve $r(t)=\left\langle t^{3}, t, t^{3}\right\rangle$ is the normal plane (this is the plane that is perpendicular to the tangent line) parallel to the plane $24 x+2 y+24 z=3$ ?
Solution. (a) Note that $r(t)=\left\langle t^{3}, t, t^{3}\right\rangle$. We have $r(-1)=\langle-1,1,-1\rangle$. Taking the derivative of $r(t)$, we get $r^{\prime}(t)=\left\langle 3 t^{2}, 1,3 t^{3}\right\rangle$. Thus the tangent vector at $t=-1$ is $r^{\prime}(-1)=\langle 3,1,3\rangle$. Therefore parametric equations for the tangent line is $x=-1+3 t, y=1+t$ and $z=-1+3 t$.
(b) The tangent vector at any time $t$ is $r^{\prime}(t)=\left\langle 3 t^{2}, 1,3 t^{3}\right\rangle$. The normal vector of the normal plane is parallel to $r^{\prime}(t)=\left\langle 3 t^{2}, 1,3 t^{3}\right\rangle$.
The normal vector of $24 x+2 y+24 z=3$ is $\langle 24,2,24\rangle$. So $\frac{24}{3 t^{2}}=\frac{2}{1}=\frac{24}{3 t^{2}}$. This implies that $3 t^{2}=12$. So $t= \pm 2$. On the curve $r(t)=\left\langle t^{3}, t, t^{3}\right\rangle$, the normal plane at the points $r(2)=\langle 8,2,8\rangle$ and $r(-2)=\langle-8,2,-8\rangle$ are parallel to the plane $24 x+2 y+24 z=3$.
(4) Find the unit tangent, unit normal, binormal vectors and curvature of the curve $r(t)=\langle 4 t, \cos (3 t), \sin (3 t)\rangle$.

Solution. Given $r(t)=\langle 4 t, \cos (3 t), \sin (3 t)\rangle$, we have $r^{\prime}(t)=\langle 4,-3 \sin (3 t), 3 \cos (3 t)\rangle$ and $\left|r^{\prime}(t)\right|=\sqrt{16+9 \sin ^{2}(3 t)+9 \cos ^{2}(3 t)}=\sqrt{25}=5$. So the unit tangent vector is $T(t)=\frac{r^{\prime}(t)}{\left|r^{\prime}(t)\right|}=\frac{1}{5}\langle 4,-3 \sin (3 t), 3 \cos (3 t)\rangle$.

Now $T^{\prime}(t)=\frac{1}{5}\langle 0,-9 \cos (3 t),-9 \sin (3 t)\rangle$ and $\left|T^{\prime}(t)\right|=\frac{9}{5}$. So the unit normal vector is $N(t)=\frac{T^{\prime}(t)}{\left|T^{\prime}(t)\right|}=\langle 0,-\cos (3 t),-\sin (3 t)\rangle$.

The binormal vector is

$$
\begin{aligned}
B(t)=T(t) \times N(t) & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\frac{4}{5} & \frac{-3 \sin (3 t)}{5} & \frac{3 \cos (3 t)}{5} \\
0 & -\cos (3 t) & -\sin (3 t)
\end{array}\right| \\
& =\left|\begin{array}{cc}
\frac{-3 \sin (3 t)}{5} & \frac{3 \cos (3 t)}{5} \\
-\cos (3 t) & -\sin (3 t)
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
\frac{4}{5} & \frac{3 \cos (3 t)}{5} \\
0 & -\sin (3 t)
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
\frac{4}{5} & \frac{-3 \sin (3 t)}{5} \\
0 & -\cos (3 t)
\end{array}\right| \vec{k} \\
& =\left\langle\frac{3}{5},-\frac{4}{5} \sin (3 t),-\frac{4}{5} \cos (3 t)\right\rangle .
\end{aligned}
$$

The curvature $k(t)=\frac{\left|T^{\prime}(t)\right|}{\left|r^{\prime}(t)\right|}=\frac{9}{5}=\frac{9}{25}$.
(5) Find the linear approximation of the function $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$ at $(1,2,2)$ and use it to estimate $\sqrt{(1.1)^{2}+(2.1)^{2}+(1.9)^{2}}$.

Solution. The partial derivatives are $f_{x}(x, y, z)=\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}, f_{y}(x, y, z)=\frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}}$, $f_{y}(x, y, z)=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}, f_{x}(1,2,2)=\frac{1}{3}$ and $f_{y}(1,2,2)=\frac{2}{3}$ and $f_{z}(1,2,2)=\frac{2}{3}$.
The linear approximation of $f(x, y, z)$ at $(1,2,2)$ is

$$
\begin{aligned}
L(x, y, z) & =f(1,2,2)+f_{x}(1,2,2)(x-1)+f_{y}(1,2,2)(y-2)+f_{z}(1,2,2)(z-2) \\
& =3+\frac{1}{3}(x-1)+\frac{2}{3}(y-2)+\frac{2}{3}(z-2) .
\end{aligned}
$$

Thus $L(1.1,2.1,1.9)=3+\frac{1}{3}(1.1-1)+\frac{2}{3}(2.1-2)+\frac{2}{3}(1.9-2)=3+\frac{.1+.2-.2}{3}=3+\frac{1}{3} \approx$ 3.033. Hence $\sqrt{(1.1)^{2}+(2.1)^{2}+(1.9)^{2}}$ is about 3.033.
(6) (a) Find the equation for the plane tangent to the surface $z=3 x^{2}-y^{2}+2 x$ at $(1,-2,1)$.
(b) Find the equation for the plane tangent to the surface $x^{2}+x y^{2}+x y z=4$ at $(1,1,2)$.
(c) Find the equation for the line normal to the surface $x^{2}+x y^{2}+x y z=4$ at $(1,1,2)$.
(d) Find the points on the sphere $x^{2}+y^{2}+z^{2}=1$ where the tangent plane is parallel to the plane $2 x+y-3 z=2$.
(e) Find the points on the sphere $(x+1)^{2}+(y-1)^{2}+z^{2}=1$ where the tangent plane is parallel to the plane $2 x+2 y-z=1$.

Solution. (a) Let $f(x, y)=3 x^{2}-y^{2}+2 x$. We have $f_{x}=6 x+2, f_{y}=-2 y$, $f_{x}(1,-2)=8$ and $f_{y}(1,-2)=4$. The equation of the tangent plane through the point $(1,-2,1)$ is

$$
\begin{aligned}
z & =f(1,-2)+f_{x}(1,-2)(x-1)+f_{y}(1,-2)(y+2) \\
& =1+8(x-1)+4(y+2)=8 x+4 y+1 .
\end{aligned}
$$

(b) In general, the normal vector for the tangent plane to the level surface of $F(x, y, z)=k$ at the point $(a, b, c)$ is $\nabla F(a, b, c)$.

The surface $x^{2}+x y^{2}+x y z=4$ can be rewritten as $F(x, y, z)=x^{2}+x y^{2}+x y z=$ $4, \nabla F(x, y, z)=\left\langle 2 x+y^{2}+y z, 2 x y+x z, x y\right\rangle$ and
$\nabla F(1,1,2)=\langle 5,4,1\rangle$ Thus the equation of the tangent plane to the surface $x^{2}+x y^{2}+x y z=4$ at the point $(1,1,2)$ is
$\langle 5,4,1\rangle \cdot\langle x-1, y-1, z-2\rangle=0$ which yields
$5 x-5+4 y-4+z-2=0$. It can be simplified as $5 x+4 y+z-11=0$.
(c) The normal line equation at $(1,1,2)$ is $x=1+5 t, y=1+4 t$ and $z=2+t$.
(d) Recall that the equation of the tangent plane at any point $\left(x_{0}, y_{0}, z_{0}\right)$ on the sphere $x^{2}+y^{2}+z^{2}=1$ is the equation $x_{0} x+y_{0} y+z_{0} z=1$. (Note that the equation of the tangent plane at any point $\left(x_{0}, y_{0}, z_{0}\right)$ on the sphere $x^{2}+y^{2}+z^{2}=R^{2}$ is the equation $x_{0} x+y_{0} y+z_{0} z=R$.) The plane $x_{0} x+y_{0} y+z_{0} z=1$ is parallel to the plane $2 x+y-3 z=2$ if their normal vectors are parallel, that is,

$$
\frac{x_{0}}{2}=\frac{y_{0}}{1}=\frac{z_{0}}{-3}=c .
$$

Hence $x_{0}=2 c, y_{0}=c$ and $z_{0}=-3 c$. Recall that $\left(x_{0}, y_{0}, z_{0}\right)$ ia a point on the sphere $x^{2}+y^{2}+z^{2}=1$. Thus $x_{0}^{2}+y_{0}^{2}+z_{0}^{2}=4 c^{2}+c^{2}+9 c^{2}=1,14 c^{2}=1$ and $c= \pm \frac{1}{\sqrt{14}}$. We have $\left(x_{0}, y_{0}, z_{0}\right)=\left(\frac{2}{\sqrt{14}}, \frac{1}{\sqrt{14}}, \frac{-3}{\sqrt{14}}\right)$ or $\left(x_{0}, y_{0}, z_{0}\right)=\left(-\frac{2}{\sqrt{14}},-\frac{1}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right)$.
(e) Recall that the equation of the tangent plane at any point $\left(x_{0}, y_{0}, z_{0}\right)$ on the sphere $(x+1)^{2}+(y-1)^{2}+z^{2}=1$ is the equation $\left(x_{0}+1\right)(x+1)+\left(y_{0}-\right.$ 1) $(y-1)+z_{0} z=1$. The plane $\left(x_{0}+1\right)(x+1)+\left(y_{0}-1\right)(y-1)+z_{0} z=1$ is parallel to the plane $2 x+2 y-z=1$ if there normal vectors are parallel, that is,

$$
\frac{x_{0}+1}{2}=\frac{y_{0}-1}{2}=\frac{z_{0}}{-1}=c .
$$

Hence $x_{0}+1=2 c, y_{0}-1=2 c$ and $z_{0}=-c$. Recall that $\left(x_{0}, y_{0}, z_{0}\right)$ is a point on the sphere $(x+1)^{2}+(y-1)^{2}+z^{2}=1$. Thus $\left(x_{0}+1\right)^{2}+\left(y_{0}-1\right)^{2}+z_{0}^{2}=$ $4 c^{2}+4 c^{2}+c^{2}=1,9 c^{2}=1$ and $c= \pm \frac{1}{3}$. Recall that $x_{0}=2 c-1, y_{0}=2 c+1$ and $z_{0}=-c$. We have $\left(x_{0}, y_{0}, z_{0}\right)=\left(-\frac{1}{3}, \frac{5}{3},-\frac{1}{3}\right)$ or $\left(x_{0}, y_{0}, z_{0}\right)=\left(-\frac{5}{3}, \frac{1}{3}, \frac{1}{3}\right)$.
(7) Find the domain and first partial derivatives of the following functions.
(a) $f(s, t)=\left(s^{2}+t^{2}\right) \sin \left(s^{2}-t^{2}\right)$.
(b) $g(x, y)=\frac{2 x-3 y}{x+2 y}$.
(c) $h(x, y)=\ln \left(\frac{x+y}{x-y}\right)$.
(d) $k(x, t)=\frac{(3 x+4 t)\left(x^{2}-t^{2}\right)}{x^{2}+t^{2}}$.

Solution. (a) $f(s, t)=\left(s^{2}+t^{2}\right) \sin \left(s^{2}-t^{2}\right)$.
The domain of $f$ is $\{(s, t) \mid s \in R$ and $t \in R\}$ We have

$$
f_{s}=2 s \sin \left(s^{2}-t^{2}\right)+2 s\left(s^{2}+t^{2}\right) \cos \left(s^{2}-t^{2}\right)
$$

and

$$
f_{t}=2 t \sin \left(s^{2}-t^{2}\right)-2 t\left(s^{2}+t^{2}\right) \cos \left(s^{2}-t^{2}\right) .
$$

(b) $g(x, y)=\frac{2 x-3 y}{x+2 y}$.

The domain of $g$ is $\{(x, y) \mid x+2 y \neq 0\}$
We have

$$
g_{x}=\frac{2(x+2 y)-(2 x-3 y)}{(x+2 y)^{2}}=\frac{7 y}{(x+2 y)^{2}}
$$

and

$$
g_{y}=\frac{-3(x+2 y)-2(2 x-3 y)}{(x+2 y)^{2}}=\frac{-7 x}{(x+2 y)^{2}} .
$$

(c) $h(x, y)=\ln \left(\frac{x+y}{x-y}\right)$.

The domain of $g$ is $\left\{(x, y) \mid x-y \neq 0\right.$ and $\left.\frac{x+y}{x-y}>0\right\}$
Note that $h(x, y)=\ln \left(\frac{x+y}{x-y}\right)=\ln (x+y)-\ln (x-y)$. We have

$$
h_{x}=\frac{1}{x+y}-\frac{1}{x-y}=\frac{-2 y}{x^{2}-y^{2}}
$$

and

$$
h_{y}=\frac{1}{x+y}+\frac{1}{x-y}=\frac{2 x}{x^{2}-y^{2}} .
$$

(d) $k(x, t)=\frac{(3 x+4 t)\left(x^{2}-t^{2}\right)}{x^{2}+t^{2}}$.

The domain of $k$ is $\left\{(x, t) \mid x^{2}+t^{2} \neq 0\right\}$, that is, $\{(x, t) \mid(x, t) \neq(0,0)\}$.
Instead of finding its derivative by brutal force, we will use the logarithm differentiation.
Note that $\ln (k(x, t))=\ln \left(\frac{(3 x+4 t) e^{\left(x^{2}-t^{2}\right)}}{x^{2}+t^{2}}\right)=\ln (3 x+4 t)+x^{2}-t^{2}-\ln \left(x^{2}+t^{2}\right)$. Thus $(\ln (k(x, t)))_{x}=\left(\ln (3 x+4 t)+x^{2}-t^{2}-\ln \left(x^{2}+t^{2}\right)\right)_{x}$,

$$
\frac{k(x, t)_{x}}{k(x, t)}=\frac{3}{3 x+4 t}+2 x-\frac{2 x}{x^{2}+t^{2}}
$$

and

$$
k_{x}=\left(\frac{3}{3 x+4 t}+2 x-\frac{2 x}{x^{2}+t^{2}}\right) \frac{(3 x+4 t) e^{\left(x^{2}-t^{2}\right)}}{x^{2}+t^{2}},
$$

Similarly,

$$
\frac{k_{t}}{k}=\frac{4}{3 x+4 t}-2 t-\frac{2 t}{x^{2}+t^{2}}
$$

and

$$
k_{t}=\left(\frac{4}{3 x+4 t}-2 t-\frac{2 t}{x^{2}+t^{2}}\right) \frac{(3 x+4 t) e^{\left(x^{2}-t^{2}\right)}}{x^{2}+t^{2}} .
$$

(8) (a) Verify that $u=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$ is a solution of $u_{x x}+u_{y y}+u_{z z}=0$.
(b) Show that $v(x, t)=f(x+2 t)+g(x-2 t)$ is a solution of the wave equation $v_{t t}=4 v_{x x}$.
Solution. (a) We have $u=\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}$,

$$
u_{x}=-x\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}, u_{x x}=-\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}-3 x^{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{5}{2}} .
$$

The expression is symmetric in $x, y$ and $z$. Hence we have

$$
u_{y y}=\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}-3 y^{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{5}{2}}
$$

and

$$
u_{z z}=\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}-3 z^{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{5}{2}} .
$$

Thus $u_{x x}+u_{y y}+u_{z z}=3\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}-3\left(x^{2}+y^{2}+z^{2}\right)\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{5}{2}}=$ $3\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}-3\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}=0$.
(b) Using $v(x, t)=f(x+2 t)+g(x-2 t)$ and chain rule, we have
$v_{x}=f^{\prime}(x+2 t)+g^{\prime}(x-2 t), v_{x x}=f^{\prime \prime}(x+2 t)+g^{\prime \prime}(x-2 t)$,
$v_{t}=2 f^{\prime}(x+2 t)-2 g^{\prime}(x-2 t), v_{t t}=4 f^{\prime \prime}(x+2 t)+4 g^{\prime \prime}(x-2 t)$.
Thus $v_{t t}-4 v_{x x}=4 f^{\prime \prime}(x+2 t)+4 g^{\prime \prime}(x-2 t)-4\left(f^{\prime \prime}(x+2 t)+g^{\prime \prime}(x-2 t)\right)=0$.
(9) Use implicit differentiation to find $z_{x}$ and $z_{y}$ if $x y z=e^{x^{2}+y^{2}+z^{2}}$.

Solution. Assume $z=z(x, y)$, we have $x y z(x, y)=e^{x^{2}+y^{2}+(z(x, y))^{2}}$.
So $(x y z(x, y))_{x}=\left(e^{x^{2}+y^{2}+(z(x, y))^{2}}\right)_{x}$,
$y z(x, y)+x y z_{x}=e^{x^{2}+y^{2}+(z(x, y))^{2}}\left(2 x+2 z z_{x}\right)$,
$x y z_{x}-2 e^{x^{2}+y^{2}+z^{2}} z z_{x}=2 e^{x^{2}+y^{2}+z^{2}} x-y z$
and $z_{x}=\frac{2 e^{x^{2}+y^{2}+z^{2} x-y z}}{x y-2 e^{x^{2}+y^{2}+z^{2}} z}$.
Similarly, $(x y z(x, y))_{y}=\left(e^{x^{2}+y^{2}+(z(x, y))^{2}}\right)_{y}$,
$x z(x, y)+x y z_{y}=e^{x^{2}+y^{2}+(z(x, y))^{2}}\left(2 y+2 z z_{y}\right)$,
$x y z_{y}-2 e^{x^{2}+y^{2}+z^{2}} z z_{y}=2 e^{x^{2}+y^{2}+z^{2}} y-x z$
and $z_{y}=\frac{2 e^{x^{2}+y^{2}+z^{2} y-x z}}{x y-2 e^{x^{2}+y^{2}+z^{2} y}}$.
(10) Suppose that over a certain region of plane the electrical potential is given by $V(x, y)=x^{2}-x y+y^{2}$.
(a) Find $\nabla V(x, y)$.
(b) Find the direction of the greatest decrease in the electrical potential at the point $(1,1)$. What is the magnitude of the greatest decrease?
(c) Find the direction of the greatest increase in the electrical potential at the point $(1,1)$. What is the magnitude of the greatest increase?
(d) Find a direction at the point $(1,1)$ in which the temperature does not increase or decrease.
(e) Find the rate of change of $V$ at $(1,1)$ in the direction $\langle 3,-4\rangle$.

Solution. (a) We have

$$
\nabla V(x, y)=\left\langle V_{x}(x, y), V_{y}(x, y)\right\rangle=\left\langle\left(x^{2}-x y+y^{2}\right)_{x},\left(x^{2}-x y+y^{2}\right)_{y}\right\rangle=\langle 2 x-y,-x+2 y\rangle
$$

(b) Since

$$
\nabla V(x, y)=\langle 2 x-y,-x+2 y\rangle
$$

the direction of the greatest decrease in electrical potential is

$$
-\nabla V(1,1)=-\langle 1,1\rangle
$$

and the magnitude is $-\|\nabla V(1,1)\|=-\sqrt{2}$.
(c) The direction of greatest increase in electrical potential is

$$
\nabla V(1,1)=\langle 1,1\rangle
$$

and the magnitude is $\|\nabla V(1,1)\|=\sqrt{2}$.
(d) If $\vec{u}$ is a direction at which the electrical potential does not increase or decrease, then $D_{\vec{u}} V(1,1)=\nabla V(1,1) \cdot \vec{u}=0$. This is equivalent to saying that $\vec{u}$ is perpendicular to $\nabla V(1,1)$. If $\vec{u}=u_{1} \vec{i}+u_{2} \vec{j}$ then we have $0=\langle 1,1\rangle \cdot \vec{u}=u_{1}+u_{2}$. We may choose $\vec{u}=\langle 1,-1\rangle$. Therefore, the electrical potential does not change in the direction $\langle 1,-1\rangle$.
(e) The unit vector in the direction $\langle 3,-4\rangle$ is $\vec{u}=\frac{1}{5}\langle 3,-4\rangle$. Thus the rate of change of $V$ at $(1,1)$ in the direction $\langle 3,-4\rangle$ is

$$
\nabla V(1,1) \cdot \vec{u}=\langle 1,1\rangle \cdot \frac{1}{5}\langle 3,-4\rangle=-\frac{1}{5} .
$$

(11) Find the local maxima, local minima and saddle points of the following functions. Decide if the local maxima or minima is global maxima or minima. Explain.
(a) $f(x, y)=3 x^{2} y+y^{3}-3 x^{2}-3 y^{2}$
(b) $f(x, y)=x^{2}+y^{3}-3 x y$
(c) $f(x, y)=x y+\ln (x)+y^{2}-10, x>0$

Solution. (a) We have $\frac{\partial f}{\partial x}=6 x y-6 x, \frac{\partial f}{\partial y}=3 x^{2}+3 y^{2}-6 y$. Thus $(x, y)$ is a stationary point if $6 x(y-1)=0,3\left(x^{2}+y^{2}-2 y\right)=0$ From the first equation, we have $x=0$ or $y=1$. Suppose $x=0$, we have $y=0$ or $y=2$ from the second equation. Suppose $y=1$, we have $x=1$ or $x=-1$ from the second equation. Thus the stationary points of $f$ are $(0,0),(0,2),(1,1)$ and $(-1,1)$.
The second order partial derivatives are $f_{x x}=6 y-6, f_{x y}=f_{y x}=6 x$ and $f_{y y}=6 y-6$.

Thus the hessian matrix

$$
\left[D^{2} f(x, y)\right]_{2 \times 2}=\left(\begin{array}{cc}
6 y-6 & 6 x \\
6 x & 6 y-6
\end{array}\right)
$$

At $(0,0)$, the hessian matrix is

$$
\left[D^{2} f(0,0)\right]_{2 \times 2}=\left(\begin{array}{cc}
-6 & 0 \\
0 & -6
\end{array}\right)
$$

We have $f_{x x}(0,0)=-6<0$ and $D=f_{x x}(0,0) f_{y y}(0,0)-\left(f_{x y}(0,0)\right)^{2}=36>0$ This implies that $D^{2} f(0,0)$ negative definite. Thus $(0,0)$ is a local maximizer with local minimum $f(0,0)=0$.

At $(0,2)$, the hessian matrix is

$$
\left[D^{2} f(0,2)\right]_{2 \times 2}=\left(\begin{array}{ll}
6 & 0 \\
0 & 6
\end{array}\right)
$$

We have $f_{x x}(0,2)=6>0$ and $D=f_{x x}(0,2) f_{y y}(0,2)-\left(f_{x y}(0,2)\right)^{2}=36>0$ This implies that $D^{2} f(0,2)$ positive definite. Thus $(0,2)$ is a local minimizer with local minimum $f(0,2)=-4$.

At $(1,1)$, the hessian matrix is

$$
\left[D^{2} f(1,1)\right]_{2 \times 2}=\left(\begin{array}{ll}
0 & 6 \\
6 & 0
\end{array}\right)
$$

We have $f_{x x}(1,1)=0$ and $D=f_{x x}(1,1) f_{y y}(1,1)-\left(f_{x y}(1,1)\right)^{2}=-36<0$ This implies that $D^{2} f(1,1)$ is indefinite. Thus $(1,1)$ is a saddle point.

At $(-1,1)$, the hessian matrix is

$$
\left[D^{2} f(1,1)\right]_{2 \times 2}=\left(\begin{array}{cc}
0 & -6 \\
-6 & 0
\end{array}\right)
$$

We have $f_{x x}(-1,1)=0$ and $D=f_{x x}(-1,1) f_{y y}(-1,1)-\left(f_{x y}(-1,1)\right)^{2}=-36<0$. This implies that $D^{2} f(-1,1)$ is indefinite. Thus $(-1,1)$ is a saddle point.
(b) The system of equations

$$
f_{x}(x, y)=2 x-3 y=0 \quad f_{y}(x, y)=3 y^{2}-3 x=0
$$

implies that $x=\frac{3}{2} y$ and $3\left(y^{2}-\frac{3}{2} y\right)=2 y\left(y-\frac{3}{2}\right)=0$. Thus, $(0,0)$ and $(9 / 4,3 / 2)$ are the critical points. We also have $f_{x x}=2, f_{x y}=f_{y x}=-3$ and $f_{y y}=6 y$.

$$
\left(D^{2} f(x, y)\right)=\left(\begin{array}{cc}
2 & -3 \\
-3 & 6 y
\end{array}\right)
$$

Since

$$
\begin{aligned}
D & =f_{x x} f_{y y}-f_{x y}^{2}=(2)(6 y)-(-3)^{2}=12 y-9, \\
\operatorname{Det}\left(D^{2} f(0,0)\right) & =-9<0, \\
\operatorname{Det}\left(D^{2} f(9 / 4,3 / 2)\right) & =18>0,
\end{aligned}
$$

the second derivative test establishes that $f$ has a saddle point at $(0,0)$ and a local minimum at $(9 / 4,3 / 2)$. Because $\lim _{y \rightarrow-\infty} f(0, y)=\lim _{y \rightarrow-\infty} y^{3}=-\infty$, we see that $(9 / 4,3 / 2)$ is not a global minimum.
(c)Solving the system of equations

$$
f_{x}(x, y)=y+\frac{1}{x}=0 \quad f_{y}(x, y)=x+2 y=0
$$

we see that $x=-2 y$ and $y-\frac{1}{2 y}=\frac{2 y^{2}-1}{2 y}=0$. Hence, the only critical point in the region $x>0$ is $(\sqrt{2},-1 / \sqrt{2})$. We also have $f_{x x}=-\frac{1}{x^{2}}, f_{x y}=f_{y x}=1$ and

$$
f_{y y}=2 .
$$

$$
\begin{gathered}
\left(D^{2} f(x, y)\right)=\left(\begin{array}{cc}
-\frac{1}{x^{2}} & 1 \\
1 & 2
\end{array}\right) \\
D=f_{x x} f_{y y}-f_{x y}^{2}=\left(-\frac{1}{x^{2}}\right)(2)-(2)^{2}<0
\end{gathered}
$$

the second derivative indicates that $(\sqrt{2},-1 / \sqrt{2}) f$ is a saddle point.
(12) Find rigorously the global maximum/minimum and global maximizer/minimizer of the following functions subject to the given constraint.
(a) $f(x, y)=x^{2} y^{2}-2 x-2 y, 0 \leq x \leq 1$ and $0 \leq y \leq 1$.
(b) $f(x, y)=x^{2} y^{2}-2 x-2 y, 0 \leq x, \quad 0 \leq y$ and $x+y \leq 1$.

Solution. (a) Let $S$ denote the region $0 \leq x \leq 1$ and $0 \leq y \leq 1$. Since $f(x, y)=x^{2} y^{2}-2 x-2 y$, we have $\nabla f(x, y)=\left(2 x y^{2}-2,2 x^{2} y-2\right)$. and hence the critical point is $(1,1)$. In the following, we use the notation $\partial E$ to denote the boundary of a set $E$. The boundary $\partial S=S_{1} \bigcup S_{2} \bigcup S_{3} \bigcup S_{4}$ where $S_{1}=\{(x, 0) \mid 0 \leq x \leq 1\}, S_{2}=\{(0, y) \mid 0 \leq y \leq 1\}, S_{3}=\{(x, 1) \mid 0 \leq x \leq 1\}$ and $S_{4}=\{(1, y) \mid 0 \leq y \leq 1\}$.
The restriction of $f$ to $S_{1}$ is $f(x, 0)=-2 x$ where $0 \leq x \leq 1$. Then $f^{\prime}(x, 0)=$ -2 . Hence there is no stationary point on $S_{1}$.
The restriction of $f$ to $S_{2}$ is $f(0, y)=x^{2}-2 x$ where $0 \leq y \leq 1$. Then $f^{\prime}(0, y)=-2$. Hence there is no critical point on $S_{2}$.

The restriction of $f$ to $S_{3}$ is $f(x, 1)=x^{2}-2 x-2$ where $0 \leq x \leq 1$. Then $f^{\prime}(x, 0)=2 x-2$. Hence there is no critical point inside $S_{3}(x=1$ is on the boundary of $S_{3}$ ).

The restriction of $f$ to $S_{4}$ is $f(1, y)=y^{2}-2 y-2$ where $0 \leq y \leq 1$. Then $f^{\prime}(0, y)=2 y-2$. Hence there is no critical point inside $S_{4}(y=1$ is on the boundary of $S_{4}$ ).
Note that $\partial S_{1} \bigcup \partial S_{2} \bigcup \partial S_{3} \bigcup \partial S_{4}=\{(0,0),(1,0),(0,1),(1,1)\}$.
From the computation about, we need to compute the following values of $f$ at the following points $\{(0,0),(1,0),(0,1),(1,1)\}$.
We have
$f(1,1)=-3, f(1,0)=f(0,1)=-2, f(0,0)=0$. Hence, the maximum is $f(0,0)=0$ and the minimum is $f(1,1)=-3$.
(b) Let $S$ denote the region $0 \leq x, 0 \leq y$ and $x+y \leq 1$. Since $f(x, y)=$ $x^{2} y^{2}-2 x-2 y$, we have $\nabla f(x, y)=\left(2 x y^{2}-2,2 x^{2} y-2\right)$. and hence the critical point is (1, 1). The boundary $\partial S=S_{1} \bigcup S_{2} \bigcup S_{3}$ where $S_{1}=\{(x, 0) \mid 0 \leq x \leq 1\}$, $S_{2}=\{(0, y) \mid 0 \leq y \leq 1\}, S_{3}=\{(x, y) \mid 0 \leq x \leq 1, x+y=1\}$.

The restriction of $f$ to $S_{1}$ is $f(x, 0)=-2 x$ where $0 \leq x \leq 1$. Then $f^{\prime}(x, 0)=$ -2 . Hence there is no critical point on $S_{1}$.
The restriction of $f$ to $S_{2}$ is $f(0, y)=x^{2}-2 x$ where $0 \leq y \leq 1$. Then $f^{\prime}(0, y)=-2$. Hence there is no critical point on $S_{2}$.

Note that $x+y=1$ on $S_{3}$. So $y=1-x$ on $S_{3}$. The restriction of $f$ to $S_{3}$ is $f(x, 1-x)=x^{2}(1-x)^{2}-2 x-2(1-x)=x^{2}(1-x)^{2}-2$ where $0 \leq x \leq 1$. Then $f^{\prime}(x, 1-x)=2 x(1-x)^{2}-2 x^{2}(1-x)$. Hence the critical point on $S_{3}$ is determined by $2 x(1-x)^{2}-2 x^{2}(1-x)=0$, i.e. $2 x\left(x^{2}-2 x+1\right)-2 x^{2}+2 x^{3}=$ $2 x^{3}-4 x^{2}+2 x-2 x^{2}+2 x^{3}=4 x^{3}-6 x^{2}+2 x=2 x\left(2 x^{2}-3 x+1\right)=2 x(x-1)(2 x-1)=0$. So $x=0, x=1$ or $x=\frac{1}{2}$. Note that $y=1-x$. We have $(x, y)=(0,1),(1,0)$ or $\left(\frac{1}{2}, \frac{1}{2}\right)$.
Note that $\partial S_{1} \bigcup \partial S_{2} \bigcup \partial S_{3} \bigcup \partial S_{4}=\{(0,0),(1,0),(0,1),(1,1)\}$.
From the computation about, we need to compute the following values of $f$ at the following points $\left\{(0,0),(1,0),(0,1),(1,1),\left(\frac{1}{2}, \frac{1}{2}\right)\right\}$. We have
$f(1,1)=-3, f(1,0)=f(0,1)=-2, f(0,0)=0$ and $f\left(\frac{1}{2}, \frac{1}{2}\right)=\frac{1}{16}-1=\frac{15}{16}$. Hence, the maximum is $f(0,0)=0$ and the minimum is $f(1,1)=-3$.

