Solution to Review Problems for Midterm II

MATH 2850 - 004

(1) (a) Change each of the following points from rectangular coordinates to cylindrical coordinates and spherical coordinates:

$$(2, -1, 2), (2, -2, -3).$$

- (b) Convert the equation $\cos(\phi) = \sin(\theta)$ into rectangular coordinates.
- (c) Convert the equation $r\cos(\theta) = z$ into rectangular coordinates.

Solution. (a) (2, -1, -2): Since $r = \sqrt{x^2 + y^2} = \sqrt{2^2 + (-1)^2} = \sqrt{5}$ and $\tan \theta = \frac{y}{x} = \frac{-1}{2}$, the point in cylindrical coordinates is $(\sqrt{5}, 2\pi - \arctan(\frac{1}{2}), -2)$. Similarly,

$$\rho = \sqrt{x^2 + y^2 + z^2} = \sqrt{2^2 + (-1)^2 + (-2)^2} = 3,$$

 $\tan \theta = \frac{y}{x} = -\frac{1}{2} \text{ and } \cos \phi = \frac{z}{\rho} = \frac{2}{3}$ so the point in spherical coordinates is $(3, 2\pi - \arctan(\frac{1}{2}), \arccos(\frac{2}{3}))$.

(2, -2, -3): Since $r = \sqrt[3]{x^2 + y^2} = \sqrt{2^2 + (-2)^2} = \sqrt{8}$ and $\tan \theta = \frac{y}{x} = \frac{-2}{2} = -1$, the point in cylindrical coordinates is $(\sqrt{5}, 2\pi - \arctan(1), -3) = (\sqrt{5}, \frac{7}{4}\pi, -3)$. Similarly,

$$p = \sqrt{x^2 + y^2 + z^2} = \sqrt{2^2 + (-2)^2 + (3)^2} = \sqrt{17},$$

 $\tan \theta = \frac{y}{x} = -1 \text{ and } \cos \phi = \frac{z}{\rho} = \frac{-2}{\sqrt{17}} \text{ so the point in spherical coordinates is}$ $\left(\sqrt{17}, \frac{7}{4}\pi, \pi - \arccos \frac{2}{\sqrt{17}}\right).$ (b) Since $\cos(\phi) = \frac{z}{\rho} = \frac{z}{\sqrt{x^2 + y^2 + z^2}}, \sin(\theta) = \frac{y}{\rho \sin(\phi)}$ $= \frac{y}{\sqrt{x^2 + y^2 + z^2}\sqrt{1 - \cos(\phi)^2}} = \frac{y}{\sqrt{x^2 + y^2 + z^2}}\sqrt{1 - \frac{z^2}{x^2 + y^2 + z^2}}} = \frac{y}{\sqrt{x^2 + y^2}}.$ The equation $\cos(\phi) = \sin(\theta)$ is $\frac{z}{\sqrt{x^2 + y^2 + z^2}} = \frac{y}{\sqrt{x^2 + y^2 + z^2}}$ in rectangular coordinates.

(c) Since $y = r \cos(\theta)$, the equation $r \cos(\theta) = z$ is y = z in rectangular coordinates.

(2) Find the arc-length of the curve $r(t) = \langle \sqrt{2}t, e^t, e^{-t} \rangle$ when $0 \le t \le \ln(2)$. (There is a typo in the original problem. r(t) should be $\langle \sqrt{2}t, e^t, e^{-t} \rangle$.)

Solution. Given $r(t) = \langle \sqrt{2}t, e^t, e^{-t} \rangle$, we have $r'(t) = \langle \sqrt{2}, e^t, -e^{-t} \rangle$ and $|r'(t)| = \sqrt{2 + e^{-2t} + e^{2t}} = \sqrt{(e^{-t} + e^t)^2} = e^{-t} + e^t$. Hence the arc-length of the curve $r(t) = \langle \sqrt{2}t, e^t, e^{-t} \rangle$ between $0 \le t \le \ln(2)$ is $\int_0^{\ln(2)} |r'(t)| dt = \int_0^{\ln(2)} (e^{-t} + e^t) dt = -e^{-t} + e^t |_0^{\ln(2)} = -e^{-\ln(2)} + e^{\ln(2)} - (-1 + 1) = -\frac{1}{2} + 2 = \frac{3}{2}$. Note that $e^{-\ln(2)} = \frac{1}{e^{\ln(2)}} = \frac{1}{2}$.

page 1 of 11

- (3) (a) Find parametric equations for the tangent line to the curve $r(t) = \langle t^3, t, t^3 \rangle$ at the point (-1, 1, -1).
 - (b) At what point on the curve $r(t) = \langle t^3, t, t^3 \rangle$ is the normal plane (this is the plane that is perpendicular to the tangent line) parallel to the plane 24x + 2y + 24z = 3?

Solution. (a) Note that $r(t) = \langle t^3, t, t^3 \rangle$. We have $r(-1) = \langle -1, 1, -1 \rangle$. Taking the derivative of r(t), we get $r'(t) = \langle 3t^2, 1, 3t^3 \rangle$. Thus the tangent vector at t = -1 is $r'(-1) = \langle 3, 1, 3 \rangle$. Therefore parametric equations for the tangent line is x = -1 + 3t, y = 1 + t and z = -1 + 3t.

(b) The tangent vector at any time t is $r'(t) = \langle 3t^2, 1, 3t^3 \rangle$. The normal vector of the normal plane is parallel to $r'(t) = \langle 3t^2, 1, 3t^3 \rangle$.

The normal vector of 24x + 2y + 24z = 3 is $\langle 24, 2, 24 \rangle$. So $\frac{24}{3t^2} = \frac{2}{1} = \frac{24}{3t^2}$. This implies that $3t^2 = 12$. So $t = \pm 2$. On the curve $r(t) = \langle t^3, t, t^3 \rangle$, the normal plane at the points $r(2) = \langle 8, 2, 8 \rangle$ and $r(-2) = \langle -8, 2, -8 \rangle$ are parallel to the plane 24x + 2y + 24z = 3.

(4) Find the unit tangent, unit normal, binormal vectors and curvature of the curve $r(t) = \langle 4t, \cos(3t), \sin(3t) \rangle$.

Solution. Given $r(t) = \langle 4t, \cos(3t), \sin(3t) \rangle$, we have $r'(t) = \langle 4, -3\sin(3t), 3\cos(3t) \rangle$ and $|r'(t)| = \sqrt{16 + 9\sin^2(3t) + 9\cos^2(3t)} = \sqrt{25} = 5$. So the unit tangent vector is $T(t) = \frac{r'(t)}{|r'(t)|} = \frac{1}{5}\langle 4, -3\sin(3t), 3\cos(3t) \rangle$. Now $T'(t) = \frac{1}{5}\langle 0, -9\cos(3t), -9\sin(3t) \rangle$ and $|T'(t)| = \frac{9}{5}$. So the unit normal

Now $T'(t) = \frac{1}{5}\langle 0, -9\cos(3t), -9\sin(3t) \rangle$ and $|T'(t)| = \frac{9}{5}$. So the unit normal vector is $N(t) = \frac{T'(t)}{|T'(t)|} = \langle 0, -\cos(3t), -\sin(3t) \rangle$. The binormal vector is

$$\begin{split} B(t) &= T(t) \times N(t) = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \frac{4}{5} & \frac{-3\sin(3t)}{5} & \frac{3\cos(3t)}{5} \\ 0 & -\cos(3t) & -\sin(3t) \end{vmatrix} \\ &= \begin{vmatrix} \frac{-3\sin(3t)}{5} & \frac{3\cos(3t)}{5} \\ -\cos(3t) & -\sin(3t) \end{vmatrix} \begin{vmatrix} \overrightarrow{i} & - \end{vmatrix} \begin{vmatrix} \frac{4}{5} & \frac{3\cos(3t)}{5} \\ 0 & -\sin(3t) \end{vmatrix} \begin{vmatrix} \overrightarrow{j} + \end{vmatrix} \begin{vmatrix} \frac{4}{5} & \frac{-3\sin(3t)}{5} \\ 0 & -\cos(3t) \end{vmatrix} \begin{vmatrix} \overrightarrow{k} \\ \hline \end{vmatrix} \\ &= \langle \frac{3}{5}, -\frac{4}{5}\sin(3t), -\frac{4}{5}\cos(3t) \rangle. \end{split}$$
The curvature $k(t) = \frac{|T'(t)|}{|r'(t)|} = \frac{9}{5} = \frac{9}{25}. \end{split}$

(5) Find the linear approximation of the function $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ at (1, 2, 2) and use it to estimate $\sqrt{(1.1)^2 + (2.1)^2 + (1.9)^2}$.

Solution. The partial derivatives are $f_x(x, y, z) = \frac{x}{\sqrt{x^2 + y^2 + z^2}}$, $f_y(x, y, z) = \frac{y}{\sqrt{x^2 + y^2 + z^2}}$, $f_y(x, y, z) = \frac{z}{\sqrt{x^2 + y^2 + z^2}}$, $f_x(1, 2, 2) = \frac{1}{3}$ and $f_y(1, 2, 2) = \frac{2}{3}$ and $f_z(1, 2, 2) = \frac{2}{3}$. The linear approximation of f(x, y, z) at (1, 2, 2) is

$$L(x, y, z) = f(1, 2, 2) + f_x(1, 2, 2)(x - 1) + f_y(1, 2, 2)(y - 2) + f_z(1, 2, 2)(z - 2)$$

= $3 + \frac{1}{3}(x - 1) + \frac{2}{3}(y - 2) + \frac{2}{3}(z - 2).$

Thus $L(1.1, 2.1, 1.9) = 3 + \frac{1}{3}(1.1-1) + \frac{2}{3}(2.1-2) + \frac{2}{3}(1.9-2) = 3 + \frac{.1+.2-.2}{3} = 3 + \frac{.1}{3} \approx 3.033$. Hence $\sqrt{(1.1)^2 + (2.1)^2 + (1.9)^2}$ is about 3.033.

- (6) (a) Find the equation for the plane tangent to the surface $z = 3x^2 y^2 + 2x$ at (1, -2, 1).
 - (b) Find the equation for the plane tangent to the surface $x^2 + xy^2 + xyz = 4$ at (1, 1, 2).
 - (c) Find the equation for the line normal to the surface $x^2 + xy^2 + xyz = 4$ at (1, 1, 2).
 - (d) Find the points on the sphere $x^2 + y^2 + z^2 = 1$ where the tangent plane is parallel to the plane 2x + y 3z = 2.
 - (e) Find the points on the sphere $(x + 1)^2 + (y 1)^2 + z^2 = 1$ where the tangent plane is parallel to the plane 2x + 2y z = 1.

Solution. (a) Let $f(x,y) = 3x^2 - y^2 + 2x$. We have $f_x = 6x + 2$, $f_y = -2y$, $f_x(1,-2) = 8$ and $f_y(1,-2) = 4$. The equation of the tangent plane through the point (1,-2,1) is

$$z = f(1, -2) + f_x(1, -2)(x - 1) + f_y(1, -2)(y + 2)$$

= 1 + 8(x - 1) + 4(y + 2) = 8x + 4y + 1.

(b) In general, the normal vector for the tangent plane to the level surface of F(x, y, z) = k at the point (a, b, c) is $\nabla F(a, b, c)$.

The surface $x^2+xy^2+xyz = 4$ can be rewritten as $F(x, y, z) = x^2+xy^2+xyz = 4$, $\nabla F(x, y, z) = \langle 2x + y^2 + yz, 2xy + xz, xy \rangle$ and

 $\nabla F(1,1,2) = \langle 5,4,1 \rangle$ Thus the equation of the tangent plane to the surface $x^2 + xy^2 + xyz = 4$ at the point (1,1,2) is $\langle 5,4,1 \rangle \cdot \langle x-1,y-1,z-2 \rangle = 0$ which yields 5x - 5 + 4y - 4 + z - 2 = 0. It can be simplified as 5x + 4y + z - 11 = 0.

(c) The normal line equation at (1, 1, 2) is x = 1+5t, y = 1+4t and z = 2+t.

(d) Recall that the equation of the tangent plane at any point (x_0, y_0, z_0) on the sphere $x^2 + y^2 + z^2 = 1$ is the equation $x_0x + y_0y + z_0z = 1$. (Note that the equation of the tangent plane at any point (x_0, y_0, z_0) on the sphere $x^2+y^2+z^2 = R^2$ is the equation $x_0x+y_0y+z_0z = R$.) The plane $x_0x+y_0y+z_0z = 1$ is parallel to the plane 2x + y - 3z = 2 if their normal vectors are parallel, that is,

$$\frac{x_0}{2} = \frac{y_0}{1} = \frac{z_0}{-3} = c.$$

Hence $x_0 = 2c$, $y_0 = c$ and $z_0 = -3c$. Recall that (x_0, y_0, z_0) ia a point on the sphere $x^2 + y^2 + z^2 = 1$. Thus $x_0^2 + y_0^2 + z_0^2 = 4c^2 + c^2 + 9c^2 = 1$, $14c^2 = 1$ and $c = \pm \frac{1}{\sqrt{14}}$. We have $(x_0, y_0, z_0) = (\frac{2}{\sqrt{14}}, \frac{1}{\sqrt{14}}, \frac{-3}{\sqrt{14}})$ or $(x_0, y_0, z_0) = (-\frac{2}{\sqrt{14}}, -\frac{1}{\sqrt{14}}, \frac{3}{\sqrt{14}})$.

(e) Recall that the equation of the tangent plane at any point (x_0, y_0, z_0) on the sphere $(x+1)^2 + (y-1)^2 + z^2 = 1$ is the equation $(x_0+1)(x+1) + (y_0 - 1)(y-1) + z_0 z = 1$. The plane $(x_0+1)(x+1) + (y_0 - 1)(y-1) + z_0 z = 1$ is parallel to the plane 2x + 2y - z = 1 if there normal vectors are parallel, that is,

$$\frac{x_0+1}{2} = \frac{y_0-1}{2} = \frac{z_0}{-1} = c.$$

Hence $x_0 + 1 = 2c$, $y_0 - 1 = 2c$ and $z_0 = -c$. Recall that (x_0, y_0, z_0) is a point on the sphere $(x + 1)^2 + (y - 1)^2 + z^2 = 1$. Thus $(x_0 + 1)^2 + (y_0 - 1)^2 + z_0^2 = 4c^2 + 4c^2 + c^2 = 1$, $9c^2 = 1$ and $c = \pm \frac{1}{3}$. Recall that $x_0 = 2c - 1$, $y_0 = 2c + 1$ and $z_0 = -c$. We have $(x_0, y_0, z_0) = (-\frac{1}{3}, \frac{5}{3}, -\frac{1}{3})$ or $(x_0, y_0, z_0) = (-\frac{5}{3}, \frac{1}{3}, \frac{1}{3})$.

- (7) Find the domain and first partial derivatives of the following functions. (a) $f(s,t) = (s^2 + t^2) \sin(s^2 - t^2)$.
 - (b) $g(x,y) = \frac{2x-3y}{x+2y}$.
 - (c) $h(x,y) = \ln(\frac{x+y}{x-y})$.

(d) $k(x,t) = \frac{(3x+4t)e^{(x^2-t^2)}}{x^2+t^2}$.

Solution. (a) $f(s,t) = (s^2 + t^2) \sin(s^2 - t^2)$. The domain of *f* is $\{(s,t)|s \in R \text{ and } t \in R\}$ We have

$$f_s = 2s\sin(s^2 - t^2) + 2s(s^2 + t^2)\cos(s^2 - t^2)$$

and

$$f_t = 2t\sin(s^2 - t^2) - 2t(s^2 + t^2)\cos(s^2 - t^2).$$

(b) $g(x,y) = \frac{2x-3y}{x+2y}$. The domain of g is $\{(x,y)|x+2y \neq 0\}$ We have $g_x = \frac{2(x+2y) - (2x-3y)}{(x+2y)^2} = \frac{7y}{(x+2y)^2}$

and

$$g_y = \frac{-3(x+2y) - 2(2x-3y)}{(x+2y)^2} = \frac{-7x}{(x+2y)^2}.$$

(c) $h(x, y) = \ln(\frac{x+y}{x-y})$.

The domain of g is $\{(x,y)|x-y \neq 0 \text{ and } \frac{x+y}{x-y} > 0\}$ Note that $h(x,y) = \ln(\frac{x+y}{x-y}) = \ln(x+y) - \ln(x-y)$. We have

$$h_x = \frac{1}{x+y} - \frac{1}{x-y} = \frac{-2y}{x^2 - y^2}$$

and

$$h_y = \frac{1}{x+y} + \frac{1}{x-y} = \frac{2x}{x^2 - y^2}.$$

(d) $k(x,t) = \frac{(3x+4t)e^{(x^2-t^2)}}{x^2+t^2}$. The domain of k is $\{(x,t)|x^2+t^2 \neq 0\}$, that is, $\{(x,t)|(x,t) \neq (0,0)\}$.

Instead of finding its derivative by brutal force, we will use the logarithm differentiation.

Note that $\ln(k(x,t)) = \ln(\frac{(3x+4t)e^{(x^2-t^2)}}{x^2+t^2}) = \ln(3x+4t) + x^2 - t^2 - \ln(x^2+t^2)$. Thus $(\ln(k(x,t)))_x = (\ln(3x+4t) + x^2 - t^2 - \ln(x^2+t^2))_x$, $k(x,t) = \frac{3}{2} - \frac{2x}{2}$

$$\frac{k(x,t)_x}{k(x,t)} = \frac{3}{3x+4t} + 2x - \frac{2x}{x^2+t^2}$$

and

$$k_x = \left(\frac{3}{3x+4t} + 2x - \frac{2x}{x^2+t^2}\right) \frac{(3x+4t)e^{(x^2-t^2)}}{x^2+t^2},$$

Similarly,

$$\frac{k_t}{k} = \frac{4}{3x+4t} - 2t - \frac{2t}{x^2+t^2}$$

and

$$k_t = \left(\frac{4}{3x+4t} - 2t - \frac{2t}{x^2+t^2}\right) \frac{(3x+4t)e^{(x^2-t^2)}}{x^2+t^2}.$$

- (8) (a) Verify that $u = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$ is a solution of $u_{xx} + u_{yy} + u_{zz} = 0$.
 - (b) Show that v(x,t) = f(x+2t) + g(x-2t) is a solution of the wave equation $v_{tt} = 4v_{xx}$.

Solution. (a) We have
$$u = (x^2 + y^2 + z^2)^{-\frac{1}{2}}$$
,
 $u_x = -x(x^2 + y^2 + z^2)^{-\frac{3}{2}}, \ u_{xx} = -(x^2 + y^2 + z^2)^{-\frac{3}{2}} - 3x^2(x^2 + y^2 + z^2)^{-\frac{5}{2}}$.

The expression is symmetric in x, y and z. Hence we have

$$u_{yy} = (x^2 + y^2 + z^2)^{-\frac{3}{2}} - 3y^2(x^2 + y^2 + z^2)^{-\frac{5}{2}}$$

and

$$u_{zz} = (x^2 + y^2 + z^2)^{-\frac{3}{2}} - 3z^2(x^2 + y^2 + z^2)^{-\frac{5}{2}}$$

Thus $u_{xx} + u_{yy} + u_{zz} = 3(x^2 + y^2 + z^2)^{-\frac{3}{2}} - 3(x^2 + y^2 + z^2)(x^2 + y^2 + z^2)^{-\frac{5}{2}} = 3(x^2 + y^2 + z^2)^{-\frac{3}{2}} - 3(x^2 + y^2 + z^2)^{-\frac{3}{2}} = 0.$

(b) Using v(x,t) = f(x+2t) + g(x-2t) and chain rule, we have $v_x = f'(x+2t) + g'(x-2t), v_{xx} = f''(x+2t) + g''(x-2t),$ $v_t = 2f'(x+2t) - 2g'(x-2t), v_{tt} = 4f''(x+2t) + 4g''(x-2t).$ Thus $v_{tt} - 4v_{xx} = 4f''(x+2t) + 4g''(x-2t) - 4(f''(x+2t) + g''(x-2t)) = 0.$

(9) Use implicit differentiation to find z_x and z_y if $xyz = e^{x^2 + y^2 + z^2}$.

Solution. Assume z = z(x, y), we have $xyz(x, y) = e^{x^2 + y^2 + (z(x,y))^2}$. So $(xyz(x, y))_x = (e^{x^2 + y^2 + (z(x,y))^2})_x$, $yz(x, y) + xyz_x = e^{x^2 + y^2 + (z(x,y))^2}(2x + 2zz_x)$, $xyz_x - 2e^{x^2 + y^2 + z^2}zz_x = 2e^{x^2 + y^2 + z^2}x - yz$ and $z_x = \frac{2e^{x^2 + y^2 + z^2}x - yz}{xy - 2e^{x^2 + y^2 + z^2}z}$. Similarly, $(xyz(x, y))_y = (e^{x^2 + y^2 + (z(x,y))^2})_y$, $xz(x, y) + xyz_y = e^{x^2 + y^2 + (z(x,y))^2}(2y + 2zz_y)$,

$$xyz_y - 2e^{x^2 + y^2 + z^2} zz_y = 2e^{x^2 + y^2 + z^2} y - xz$$

and $z_y = \frac{2e^{x^2 + y^2 + z^2} y - xz}{xy - 2e^{x^2 + y^2 + z^2} y}.$

- (10) Suppose that over a certain region of plane the electrical potential is given by $V(x, y) = x^2 - xy + y^2$.
 - (a) Find $\nabla V(x, y)$.
 - (b) Find the direction of the greatest decrease in the electrical potential at the point (1,1). What is the magnitude of the greatest decrease?
 - (c) Find the direction of the greatest increase in the electrical potential at the point (1,1). What is the magnitude of the greatest increase?
 - (d) Find a direction at the point (1,1) in which the temperature does not increase or decrease.
 - (e) Find the rate of change of V at (1,1) in the direction $\langle 3, -4 \rangle$.

Solution. (a) We have

$$\nabla V(x,y) = \langle V_x(x,y), V_y(x,y) \rangle = \langle (x^2 - xy + y^2)_x, (x^2 - xy + y^2)_y \rangle = \langle 2x - y, -x + 2y \rangle$$

(b) Since

$$\nabla V(x,y) = \langle 2x - y, -x + 2y \rangle$$

the direction of the greatest decrease in electrical potential is

$$-\nabla V(1,1) = -\langle 1,1 \rangle$$

and the magnitude is $-\|\nabla V(1,1)\| = -\sqrt{2}$.

(c) The direction of greatest increase in electrical potential is

$$\nabla V(1,1) = \langle 1,1 \rangle$$

and the magnitude is $\|\nabla V(1,1)\| = \sqrt{2}$.

(d) If \overrightarrow{u} is a direction at which the electrical potential does not increase or decrease, then $D_{\overrightarrow{u}}V(1,1) = \nabla V(1,1) \cdot \overrightarrow{u} = 0$. This is equivalent to saying that \overrightarrow{u} is perpendicular to $\nabla V(1,1)$. If $\overrightarrow{u} = u_1 \overrightarrow{i} + u_2 \overrightarrow{j}$ then we have $0 = \langle 1,1 \rangle \cdot \overrightarrow{u} = u_1 + u_2$. We may choose $\overrightarrow{u} = \langle 1,-1 \rangle$. Therefore, the electrical potential does not change in the direction $\langle 1,-1 \rangle$. (e) The unit vector in the direction $\langle 3, -4 \rangle$ is $\overrightarrow{u} = \frac{1}{5} \langle 3, -4 \rangle$. Thus the rate of change of *V* at (1, 1) in the direction $\langle 3, -4 \rangle$ is

$$\nabla V(1,1) \cdot \overrightarrow{u} = \langle 1,1 \rangle \cdot \frac{1}{5} \langle 3,-4 \rangle = -\frac{1}{5}.$$

- (11) Find the local maxima, local minima and saddle points of the following functions. Decide if the local maxima or minima is global maxima or minima. Explain.
 - (a) $f(x,y) = 3x^2y + y^3 3x^2 3y^2$ (b) $f(x,y) = x^2 + y^3 - 3xy$ (c) $f(x,y) = xy + \ln(x) + y^2 - 10, x > 0$

Solution. (a) We have $\frac{\partial f}{\partial x} = 6xy - 6x$, $\frac{\partial f}{\partial y} = 3x^2 + 3y^2 - 6y$. Thus (x, y) is a stationary point if 6x(y-1) = 0, $3(x^2 + y^2 - 2y) = 0$ From the first equation, we have x = 0 or y = 1. Suppose x = 0, we have y = 0 or y = 2 from the second equation. Suppose y = 1, we have x = 1 or x = -1 from the second equation. Thus the stationary points of f are (0,0), (0,2), (1,1) and (-1,1).

The second order partial derivatives are $f_{xx} = 6y - 6$, $f_{xy} = f_{yx} = 6x$ and $f_{yy} = 6y - 6$.

Thus the hessian matrix

$$[D^{2}f(x,y)]_{2\times 2} = \begin{pmatrix} 6y - 6 & 6x \\ 6x & 6y - 6 \end{pmatrix}$$

At (0,0), the hessian matrix is

$$[D^2 f(0,0)]_{2\times 2} = \begin{pmatrix} -6 & 0\\ 0 & -6 \end{pmatrix}.$$

We have $f_{xx}(0,0) = -6 < 0$ and $D = f_{xx}(0,0)f_{yy}(0,0) - (f_{xy}(0,0))^2 = 36 > 0$ This implies that $D^2 f(0,0)$ negative definite. Thus (0,0) is a local maximizer with local minimum f(0,0) = 0.

At (0,2), the hessian matrix is

$$[D^2 f(0,2)]_{2\times 2} = \begin{pmatrix} 6 & 0 \\ 0 & 6 \end{pmatrix}.$$

We have $f_{xx}(0,2) = 6 > 0$ and $D = f_{xx}(0,2)f_{yy}(0,2) - (f_{xy}(0,2))^2 = 36 > 0$ This implies that $D^2 f(0,2)$ positive definite. Thus (0,2) is a local minimizer with local minimum f(0,2) = -4.

At (1,1), the hessian matrix is

$$[D^2 f(1,1)]_{2 \times 2} = \begin{pmatrix} 0 & 6 \\ 6 & 0 \end{pmatrix}.$$

We have $f_{xx}(1,1) = 0$ and $D = f_{xx}(1,1)f_{yy}(1,1) - (f_{xy}(1,1))^2 = -36 < 0$ This implies that $D^2f(1,1)$ is indefinite. Thus (1,1) is a saddle point.

At (-1,1), the hessian matrix is

$$[D^2 f(1,1)]_{2 \times 2} = \begin{pmatrix} 0 & -6 \\ -6 & 0 \end{pmatrix}$$

We have $f_{xx}(-1,1) = 0$ and $D = f_{xx}(-1,1)f_{yy}(-1,1) - (f_{xy}(-1,1))^2 = -36 < 0$. This implies that $D^2f(-1,1)$ is indefinite. Thus (-1,1) is a saddle point.

(b) The system of equations

$$f_x(x,y) = 2x - 3y = 0$$
 $f_y(x,y) = 3y^2 - 3x = 0$

implies that $x = \frac{3}{2}y$ and $3(y^2 - \frac{3}{2}y) = 2y(y - \frac{3}{2}) = 0$. Thus, (0,0) and (9/4, 3/2) are the critical points. We also have $f_{xx} = 2$, $f_{xy} = f_{yx} = -3$ and $f_{yy} = 6y$.

$$(D^2f(x,y)) = \left(\begin{array}{cc} 2 & -3\\ -3 & 6y \end{array}\right)$$

Since

$$D = f_{xx}f_{yy} - f_{xy}^2 = (2)(6y) - (-3)^2 = 12y - 9,$$
$$Det(D^2f(0,0)) = -9 < 0,$$
$$Det(D^2f(9/4, 3/2)) = 18 > 0,$$

the second derivative test establishes that f has a saddle point at (0,0) and a local minimum at (9/4, 3/2). Because $\lim_{y\to-\infty} f(0, y) = \lim_{y\to-\infty} y^3 = -\infty$, we see that (9/4, 3/2) is not a global minimum.

(c)Solving the system of equations

$$f_x(x,y) = y + \frac{1}{x} = 0$$
 $f_y(x,y) = x + 2y = 0$,

we see that x = -2y and $y - \frac{1}{2y} = \frac{2y^2 - 1}{2y} = 0$. Hence, the only critical point in the region x > 0 is $(\sqrt{2}, -1/\sqrt{2})$. We also have $f_{xx} = -\frac{1}{x^2}$, $f_{xy} = f_{yx} = 1$ and

 $f_{yy} = 2.$

$$(D^2 f(x, y)) = \begin{pmatrix} -\frac{1}{x^2} & 1\\ 1 & 2 \end{pmatrix}$$
$$D = f_{xx} f_{yy} - f_{xy}^2 = \left(-\frac{1}{x^2}\right)(2) - (2)^2 < 0$$
the second derivative indicates that $(\sqrt{2}, -1/\sqrt{2}) f$ is a saddle point.

 \square

(12) Find rigorously the global maximum/minimum and global maximizer/minimizer of the following functions subject to the given constraint.

(a) $f(x,y) = x^2y^2 - 2x - 2y, 0 \le x \le 1$ and $0 \le y \le 1$. (b) $f(x,y) = x^2y^2 - 2x - 2y, 0 \le x, 0 \le y$ and $x + y \le 1$.

Solution. (a) Let S denote the region $0 \le x \le 1$ and $0 \le y \le 1$. Since $f(x,y) = x^2y^2 - 2x - 2y$, we have $\nabla f(x,y) = (2xy^2 - 2, 2x^2y - 2)$. and hence the critical point is (1,1). In the following, we use the notation ∂E to denote the boundary of a set E. The boundary $\partial S = S_1 \bigcup S_2 \bigcup S_3 \bigcup S_4$ where $S_1 = \{(x,0)|0 \le x \le 1\}$, $S_2 = \{(0,y)|0 \le y \le 1\}$, $S_3 = \{(x,1)|0 \le x \le 1\}$ and $S_4 = \{(1,y)|0 \le y \le 1\}$.

The restriction of f to S_1 is f(x, 0) = -2x where $0 \le x \le 1$. Then f'(x, 0) = -2. Hence there is no stationary point on S_1 .

The restriction of f to S_2 is $f(0,y) = x^2 - 2x$ where $0 \le y \le 1$. Then f'(0,y) = -2. Hence there is no critical point on S_2 .

The restriction of f to S_3 is $f(x,1) = x^2 - 2x - 2$ where $0 \le x \le 1$. Then f'(x,0) = 2x - 2. Hence there is no critical point inside $S_3(x = 1$ is on the boundary of S_3).

The restriction of f to S_4 is $f(1,y) = y^2 - 2y - 2$ where $0 \le y \le 1$. Then f'(0,y) = 2y - 2. Hence there is no critical point inside $S_4(y = 1$ is on the boundary of S_4).

Note that $\partial S_1 \bigcup \partial S_2 \bigcup \partial S_3 \bigcup \partial S_4 = \{(0,0), (1,0), (0,1), (1,1)\}.$

From the computation about, we need to compute the following values of f at the following points $\{(0,0), (1,0), (0,1), (1,1)\}$. We have

f(1,1) = -3, f(1,0) = f(0,1) = -2, f(0,0) = 0. Hence, the maximum is f(0,0) = 0 and the minimum is f(1,1) = -3.

(b) Let *S* denote the region $0 \le x$, $0 \le y$ and $x + y \le 1$. Since $f(x, y) = x^2y^2 - 2x - 2y$, we have $\nabla f(x, y) = (2xy^2 - 2, 2x^2y - 2)$. and hence the critical point is (1, 1). The boundary $\partial S = S_1 \bigcup S_2 \bigcup S_3$ where $S_1 = \{(x, 0) | 0 \le x \le 1\}$, $S_2 = \{(0, y) | 0 \le y \le 1\}$, $S_3 = \{(x, y) | 0 \le x \le 1, x + y = 1\}$.

The restriction of f to S_1 is f(x,0) = -2x where $0 \le x \le 1$. Then f'(x,0) = -2. Hence there is no critical point on S_1 .

The restriction of f to S_2 is $f(0,y) = x^2 - 2x$ where $0 \le y \le 1$. Then f'(0,y) = -2. Hence there is no critical point on S_2 .

Note that x + y = 1 on S_3 . So y = 1 - x on S_3 . The restriction of f to S_3 is $f(x, 1 - x) = x^2(1 - x)^2 - 2x - 2(1 - x) = x^2(1 - x)^2 - 2$ where $0 \le x \le 1$. Then $f'(x, 1 - x) = 2x(1 - x)^2 - 2x^2(1 - x)$. Hence the critical point on S_3 is determined by $2x(1 - x)^2 - 2x^2(1 - x) = 0$, i.e. $2x(x^2 - 2x + 1) - 2x^2 + 2x^3 = 2x^3 - 4x^2 + 2x - 2x^2 + 2x^3 = 4x^3 - 6x^2 + 2x = 2x(2x^2 - 3x + 1) = 2x(x - 1)(2x - 1) = 0$. So x = 0, x = 1 or $x = \frac{1}{2}$. Note that y = 1 - x. We have (x, y) = (0, 1), (1, 0) or $(\frac{1}{2}, \frac{1}{2})$.

Note that $\partial S_1 \bigcup \partial S_2 \bigcup \partial S_3 \bigcup \partial S_4 = \{(0,0), (1,0), (0,1), (1,1)\}.$

From the computation about, we need to compute the following values of f at the following points $\{(0,0), (1,0), (0,1), (1,1), (\frac{1}{2}, \frac{1}{2})\}$. We have

f(1,1) = -3, f(1,0) = f(0,1) = -2, f(0,0) = 0 and $f(\frac{1}{2},\frac{1}{2}) = \frac{1}{16} - 1 = \frac{15}{16}$. Hence, the maximum is f(0,0) = 0 and the minimum is f(1,1) = -3.