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Solution to Review Problems for Midterm Ii
MATH 2850 - 004

(@) Change each of the following points from rectangular coordinates to
cylindrical coordinates and spherical coordinates:

(2,-1,2),(2,-2,-3).

(b) Convert the equation cos(¢) = sin(¢) into rectangular coordinates.
(c) Convert the equation r cos(f) = z into rectangular coordinates.

Solution. (a) (2,—1,—2): Since r = /22 + 42 = /22 + (-1)2 = /5 and tanf =

¢ = =1, the point in cylindrical coordinates is (v/5, 2r — arctan (3) , —2). Sim-

T

ilarly,

p=V1+y? +Z2 V2 + +(=2) =3,

tand = £ = —1 and cos¢ = Z = 2 so the pomt in spherical coordinates is
e P

3
(3, 2w — arctan (%) , arccos (g))

(2,—2,-3): Since r = /22 +1y2 = /22 + = /8 and tan@ Y=
= = —1, the point in cylindrical coordlnates is (\/_ ,2m — arctan (1), —3) =
(v/5, 7, —3). Similarly,

p=r12+12+ 22 =22+ +(3)2= V17,
tanf = £ = —1 and cos¢ = == \;_1*7 so the pomt in spherical coordinates is

Ve 2
< 17, Z_lﬂ-’ T — arccos \/—17) .
. _z _ z : — Y
(b) Since cos(¢) = 2 = T sin(f) = PYNED
= Y = 4 = —2%__ . The equation cos =
\/z2+y2+z2\/1_005(¢)2 $2+y2+22\/1_$2+;§+22 \/m2+y2 q <¢>

sin(f) is g = —~Z— in rectangular coordinates.
\/x2+y2+22 \/x2+y2

(c) Since y = rcos(f), the equation rcos(f) = z is y = z in rectangular
coordinates.

]

Find the arc-length of the curve r(t) = (v/2t,e',e™*) when 0 < ¢t < In(2).
(There is a typo in the original problem. r(t) should be (v/2t, ¢!, e~t).)

Solution. Given r(t) = (v/2t, ¢!, e7?), we have r/(t) = (/2,e!, —e~*) and |r'(t)| =

V2+e 242t = /(et+e)2 = et +e'. Hence the arc-length of the curve

r(t) = (V2t, ¢!, e between 0 < t < In(2) is [\"? |r/(6)[dt = [P (e + et)dt =

et PP = 7@ L @ _(_141) = —1 4 2 = 3. Note that e~ ® =
1

e T o2°
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(3)

(4)

]

(@) Find parametric equations for the tangent line to the curve r(t) =
(t3,t,1%) at the point (—1,1,—1).

(b) At what point on the curve r(t) = (t3,¢,#3) is the normal plane (this
is the plane that is perpendicular to the tangent line) parallel to the
plane 24z + 2y + 24z = 3?

Solution. (a) Note that r(t) = (¢3,¢,t3). We have r(—1) = (1,1, —1). Taking
the derivative of r(t), we get r/(t) = (3t?,1,3t*). Thus the tangent vector at
t =—11is7’(—1) = (3,1,3). Therefore parametric equations for the tangent
lineise=—-1+4+3t,y=1+tand z = -1+ 3t

(b) The tangent vector at any time ¢ is 7/(t) = (3t%,1,3t*). The normal
vector of the normal plane is parallel to 7/(t) = (3t%, 1, 3t3).

The normal vector of 24z + 2y + 24z = 3 is (24,2,24). So 25 = 2 = 2. This
implies that 3> = 12. So t = +2. On the curve r(t) = (t3,t,t*), the normal
plane at the points r(2) = (8,2,8) and r(—2) = (—8,2,—8) are parallel to the
plane 24z + 2y + 24z = 3.

0

Find the unit tangent, unit normal, binormal vectors and curvature of the
curve r(t) = (4t, cos(3t), sin(3t)).

Solution. Given r(t) = (4t, cos(3t), sin(3t)), we have r'(t) = (4, —3sin(3t), 3 cos(3t))
and |r'(t)] = 1/16 4 9sin?(3t) + 9 cos?(3t) = v/25 = 5. So the unit tangent vec-
tor is T(t) = i = $(4, —3sin(3t), 3cos(31)).

Now T"(t) = £(0, —9cos(3t), —9sin(3t)) and |T"(t)| = 2. So the unit normal
vector is N(t) = g = (0, — cos(3t), — sin(3t)).

The binormal vector is

— — —

z J k
T(t) x N(t) = % —3815n(3t) 300;(3t)

0 —cos(3t) —sin(3t)

—3sin(3t) 3 cos(3t) N 4 3 cos(3t) _ 4 —3sin(3t) N
— 5 5 P 5 i 41|53 5 L
—cos(3t) —sin(3t) 0 —sin(3t) 0 —cos(3t)
3 4 4
= <3’ —x sin(3t), —% cos(3t))
/ 9
The curvature k(t) = 'g,((f))" =:=2
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(5) Find the linear approximation of the function f(z,y,2) = /22 + y? + 22 at
(1,2,2) and use it to estimate /(1.1)2 + (2.1)2 + (1.9)2.

Solution. The partial derivatives are f,(z,y,2) = ——, f,(2,9,2) = —t—,
o a2ty z2 TV N

fy(.fL',y,Z) = \/ﬁ, fx(17272) = % and fy<1,2,2> = % and fz(17272) = %
The linear approximation of f(z,y,z) at (1,2,2) is

L(x,y, 2) = f(17 27 2) + fx(1>2a 2)($ - 1) + fy(L 272)(9 - 2) + fz(la 27 2)(2 - 2)

1 2 2
= (-1 +Z(y—2)+=(2—2).
3+3@-D+3-2)+3(-2)
Thus L(1.1,2.1,1.9) =34+ 3(1.1-1)+2(2.1-2)+2(1.9-2) =3+ 1222 =34+ 1 »
3.033. Hence +/(1.1)2 + (2.1)2 + (1.9)? is about 3.033.

]

(6) (a) Find the equation for the plane tangent to the surface z = 322 — y2 + 2z
at (1,-2,1).

(b) Find the equation for the plane tangent to the surface 2%+ xy*+ryz = 4
at (1,1,2).

(c) Find the equation for the line normal to the surface z? + zy? + zyz = 4
at (1,1,2).

(d) Find the points on the sphere 22 + y? + 2> = 1 where the tangent plane
is parallel to the plane 2x +y — 3z = 2.

(e) Find the points on the sphere (z + 1)? + (y — 1)? + 2> = 1 where the
tangent plane is parallel to the plane 2z + 2y — z = 1.

Solution. (a) Let f(x,y) =
f2(1,—2) =8 and f,(1, —2)
the point (1,—-2,1) is
2 f<17 _2) + f:]c(17 —2)(1‘ o 1) + fy(17 _2>(y + 2)
=1+8x—1)+4(y+2) =8z +4y+ 1.

322 — y? + 2z. We have f, = 6z + 2, f, = —2y,
= 4. The equation of the tangent plane through

(b) In general, the normal vector for the tangent plane to the level surface
of F(x,y,z) = k at the point (a,b,c) is VF(a,b,c).

The surface 2% +zy*+ryz = 4 can be rewritten as F(x,y, 2) = 2*+xy*+ryz =
4, VF(z,y,2) = 2z + y* + yz, 22y + x2, vy) and
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VF(1,1,2) = (5,4,1) Thus the equation of the tangent plane to the surface
x? + x3? + zyz = 4 at the point (1,1,2) is

(5,4,1) - (x — 1,y — 1,z — 2) = 0 which yields

bx —5+4y —4+ 2z — 2= 0. It can be simplified as 5z + 4y + z — 11 = 0.

(c) The normal line equation at (1,1,2) isz = 1+5¢, y = 1+4t and z = 2+¢.

(d) Recall that the equation of the tangent plane at any point (x, yo, 20)
on the sphere 22 + 3? + 22 = 1 is the equation zyz + 3y + 202 = 1. (Note
that the equation of the tangent plane at any point (z, yo, z0) on the sphere
2412 +2% = R? is the equation zox+yoy+20z = R.) The plane zox+yoy+20z = 1
is parallel to the plane 2z + y — 3z = 2 if their normal vectors are parallel,

that is,

To _Yo_ 20 _

2 1 -3
Hence zy = 2¢, yo = ¢ and zy = —3c¢. Recall that (zy,yo, 20) ia a point on the
sphere z? + y* + 2z = 1. Thus 2} +y5 + 25 = 4* + 4+ 92 = 1, 14¢* = 1 and

Cc= j:\/% We have (x07y07Z0) - <\/L1*47 \/%747 \;_%J or (I07y0720) = (_\/%7 _\/Lﬂv \/%)

(e) Recall that the equation of the tangent plane at any point (zg, v, 20)
on the sphere (z+1)*+ (y — 1)? + 2% = 1 is the equation (z¢+ 1)(z + 1) + (yo —
1)(y—1)+20z = 1. The plane (zo+1)(z+1)+ (yo—1)(y — 1) + 20z = 1 is parallel
to the plane 2x 4 2y — z = 1 if there normal vectors are parallel, that is,

To+ 1 _yo—l_ﬁ_c
2 2 —1
Hence zq + 1 = 2¢, yo — 1 = 2c and zy = —c. Recall that (z,yo, 20) is a point
on the sphere (r +1)? + (y — 1)> + 22 = 1. Thus (zo + 1)® + (yo — 1) + 22 =
4 + 4%+ =1, 9¢* = 1 and ¢ = +3. Recall that 2o = 2¢ — 1, yy = 2c+ 1 and

29 = —c. We have (x¢, 9o, 20) = (—%7 2, —%) or (xo, Yo, 20) = (—3, %, %)

]

(7) Find the domain and first partial derivatives of the following functions.
(@) f(s,t) = (s* +t?)sin(s? — 12).

2x—3
0) g(z,y) = T,/

(©) h(z,y) = In(2).

=y
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2242
(d) k(x,t) _ (3z+4t)el )-

2412

Solution. (a) f(s,t) = (s* + %) sin(s? — 12).
The domain of f is {(s,t)|s € R and t € R} We have

fs = 2ssin(s® — %) + 2s(s* + t*) cos(s* — t?)

and
fr = 2tsin(s® — t2) — 2t(s* + %) cos(s* — t2).

b) g(z,y) = Z5r.
The domain of g is {(z,y)|x + 2y # 0}

We have
_ 2z + 2y) — (2z — 3y) _ Ty
! (z + 2y)? (z + 2y)?
and
3w +2y) —222-3y) Tz
e (v +2y) ICEE
() h(z,y) = In($24).

The domain of g is {(z,y)|z —y # 0 and ;=% > 0}
Note that h(z,y) = In(;*%) = In(z +y) — In(x — y). We have
1 1 _9y

ha

::E+y_:v—y x? —y?

and
R B B
Voor4y x—y  a?—y?

T e(EQ*tQ)
(d) k(1) = B —

The domain of k is {(z,t)|z? + ¢* # 0}, that is, {(z,)|(z,t) # (0,0)}.
Instead of finding its derivative by brutal force, we will use the logarithm

differentiation. ) s
Note that In(k(z,t)) = In( S0 — 10(3 4+ 4t) + 22 — 12 — In(22 + 2). Thus
(In(k(z, 1)) = (In(3z + 4t) + 2% — t* — In(a? + t?)),,

k(x,t), _ 3 top 2x

k(xz,t) 3z +4t 2 4 12
and : syelet

2z 3r +4t)e'
kz:<3x+4t+2x_x2—l—t2) 72 + 12 ’
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Similarly,
ke 4 2t
k 3z +4t x? +t?
and
4 2t (3x + 4t)e 1)
k= ( ot~ yBo e
3x + 4t x2 + 12 x2 + t?
O
(8) (a) Verify that u = \/ﬁ is a solution of w,, + uy, + u,, = 0.
(b) Show that v(z,t) = f(z+2t)+g(x—2t) is a solution of the wave equation
Vgt = gy

Solution. (a) We have u = (2% + 32 + ZQ)_%,
_5

Up = —2(2? + 42+ 22) 7%, Ugp = — (27 + 97 + 2072 = 322 (a% + 97 + 27)

The expression is symmetric in x, y and z. Hence we have

_5
2

Uy = (2% + 12 + 2377 = 32 (2% + o + )

and
Uy, = (224 y% + 2277 =322+ % + )5
Thus te, + tyy + uze = 3(2? + y? + 22)72 = (2 + 12 + 22)(2® + y* + 2%) 7% =
3
2

a2+ 2+ 2272 — 32+ + 2%)

(b) Using v(z,t) = f(x + 2t) + g(z — 2t) and chain rule, we have
vy = flx 4 2t) + ¢ (x — 2t), vge = f"(x + 2t) + ¢"(z — 2t),
v =2f"(x+2t) — 2¢'(x — 2t), vy = 4f"(x + 2t) + 49" (z — 2t).
Thus vy — 4vg, = 4f"(x 4+ 2t) + 4g" (x — 2t) — 4(f"(x + 2t) + ¢"(x — 2t)) = 0.
]

(9) Use implicit differentiation to find z, and z, if zyz = e ¥+,
p y
Solution. Assume z = z(z,y), we have zyz(x,y) = e ¥ +=@v)?,
So (zyz(z,y)), = (e7 TV HEEDT) |
y2(z,y) + vyz, = ¥ HHEEN (20 4 222,
Tyzy — 28T TV = 2 YT gy
22y ,2
and z, = 2t e

Similarly, (zyz(z,y)), = (¢ TV TEEN?)
z2(z,y) + pyz, = e TV TEED? (2 4 222 ),
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2 2 2 2 2 2
Tyzy — 267 TV 2z, = 26" TV Ty — 1z
2 2 2
2er Ty 2%,
and 2y = € T " Yy—TZ

py—2er tuitz2y’

]

(10) Suppose that over a certain region of plane the electrical potential is given
by V(z,y) = 2% — zy + y°.

(@) Find VV (z,y).

(b) Find the direction of the greatest decrease in the electrical potential
at the point (1,1). What is the magnitude of the greatest decrease?

(c) Find the direction of the greatest increase in the electrical potential at
the point (1,1). What is the magnitude of the greatest increase?

(d) Find a direction at the point (1,1) in which the temperature does not
increase or decrease.

(e) Find the rate of change of V' at (1, 1) in the direction (3, —4).

Solution. (a) We have

VV(z,y) = (Va(z,y), Vy(z,y)) = (2" — 2y + ¥)s, (® — 2y + 37),) = 22—y, —x + 2y)

(b) Since
VVi(z,y) = (2 —y, —x + 2y)
the direction of the greatest decrease in electrical potential is
-VV(1,1)=—(1,1)
and the magnitude is —||VV(1,1)|| = —v/2.

(c) The direction of greatest increase in electrical potential is
VV(1,1)=(1,1)
and the magnitude is |VV(1,1)| = v2.

(d) If @ is a direction at which the electrical potential does not increase
or decrease, then D4V (1,1) = VV(1,1)-w = 0. This is equivalent to say-
ing that ¥ is perpendicular to VV(1,1). If @ = u; i +u»j then we have
0=(1,1)-u = u; +uy. We may choose u = (1,—1). Therefore, the electrical
potential does not change in the direction (1, —1).
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(€) The unit vector in the direction (3, —4) is u = £(3, —4). Thus the rate of
change of V' at (1,1) in the direction (3, —4) is

VV(1,1)- 7 = (1,1)- %<3, —4) = —é.

]

(11) Find the local maxima, local minima and saddle points of the following
functions. Decide if the local maxima or minima is global maxima or
minima. Explain.

@) f(z,y) =32%y +y* — 32> — 3y°
(b) f(z,y) = 2° +y° — 3xy
(© flx,y) =zy+In(z)+y*—10, 2 >0

Solution. (a) We have % = 6xy — 6z, ‘3—5 = 322 + 3y? — 6y. Thus (z,y) is a
stationary point if 6z(y — 1) = 0, 3(2? + y* — 2y) = 0 From the first equation,
we have x = 0 or y = 1. Suppose z = 0, we have y = 0 or y = 2 from the
second equation. Suppose y = 1, we have z = 1 or = —1 from the second
equation. Thus the stationary points of f are (0,0), (0,2), (1,1) and (-1, 1).

The second order partial derivatives are f,, = 6y — 6, f;, = f,. = 6z and
fyy = 6y — 6.

Thus the hessian matrix

) B 6y —6  6x
[D f(xay)]ZXZ — ( 6 6y _6 )

At (0,0), the hessian matrix is
D00k =(
) 2Xx2 — 0 6 .

We have f,.(0,0) = —6 < 0 and D = f,,(0,0)f,,(0,0) — (f,(0,0))* = 36 > 0 This
implies that D?f(0,0) negative definite. Thus (0,0) is a local maximizer
with local minimum f(0,0) = 0.

At (0,2), the hessian matrix is

6 0
[D?£(0,2)]ax2 = ( 0 6 ) :
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) = (fzy(0,2))* = 36 > 0 This

We have f,,(0,2) =6 > 0 and D = f,,(0,2)f,,(0,
implies that D?f(0,2) positive definite. Thus (0, 2) is a local minimizer with

local minimum f(0,2) = —4.
At (1,1), the hessian matrix is

0 6
[D2f(171)]2><2 - ( 6 0 > .
1,1) = (fo,(1,1))2 = —36 < 0 This

We have f,,(1,1) = 0 and D = f,,(1,1)f,,(
implies that D?f(1,1) is indefinite. Thus (1, 1) is a saddle point.

At (—1,1), the hessian matrix is
D0 =
) 2x2 — _6 0

We have f,,(—1,1) =0 and D = f,,(—1,1)f,,(—1,1) = (foy(—1,1))
This implies that D?f(—1,1) is indefinite. Thus (-1, 1) is a saddle point

2=-36 < 0.

(b) The system of equations
fy(xay) = 392 —3x=0

) = 0. Thus, (0,0) and (9/4,3/2)
= fye = —3 and f,, = 6y.

fe(z,y) =22 -3y =0

implies that z = 2y and 3(y* — 3y) = 2y(y —
are the critical points. We also have f,,

Jay
e = (2 o)

3
2
=2

’

Since
D = foufyy — xy = (2)(6y) — (_3)2 =12y -9,
Det(D?*£(0,0)) = -9 < 0,
Det(D?£(9/4,3/2)) = 18 > 0,
the second derivative test establishes that f has a saddle point at ( ,0) and
a local minimum at (9/4,3/2). Because lim, ., f(0,y) = lim,_, - y* = —o0,

we see that (9/4,3/2) is not a global minimum.

(c)Solving the system of equations
folz,y) =y+, =0 fylzy) =z +2y=0,
we see that r = —2y and y — % = sty’l = 0. Hence, the only critical point in
the region z > 0 is (v2,—1/v/2). We also have f,, = —%, f,y = f,. = 1 and
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Joy = 2.
(D* () = ( )

D = fouofyy — foy = (—32)(2) = (2)* <0
the second derivative indicates that (v/2, —1/v/2) f is a saddle point.
O

(12) Find rigorously the global maximum/minimum and global maximizer/minimizer
of the following functions subject to the given constraint.
@ f(r,y)=2%y*—2r -2y, 0<z<land 0<y<1.
b) f(z,y)=2%*—22—-2y,0<z, 0<yandx+y<]l.

Solution. (a) Let S denote the region 0 < z < 1 and 0 <y < 1. Since
f(z,y) = 2*y* — 2z — 2y, we have Vf(z,y) = (2zy*> — 2,22%y — 2). and hence
the critical point is (1,1). In the following, we use the notation 0F to
denote the boundary of a set E. The boundary 05 = S, |J S2 J S J Ss where
S1={(z,0)0 <z <1}, S ={0,9)]0 <y <1}, 53 ={(z,1)]0 <z <1} and
Si={Ly)l0<y <1}

The restriction of f to S; is f(z,0) = —2x where 0 < z < 1. Then f(z,0) =
—2. Hence there is no stationary point on 5;.

The restriction of f to S, is f(0,y) = 2? — 2x where 0 < y < 1. Then
f'(0,y) = —2. Hence there is no critical point on S,.

The restriction of f to S3 is f(x,1) = 2 — 22 — 2 where 0 < x < 1. Then
f'(x,0) = 2z — 2. Hence there is no critical point inside S;(z = 1 is on the
boundary of S3).

The restriction of f to Sy is f(1,y) = y> — 2y — 2 where 0 < y < 1. Then
f'(0,y) = 2y — 2. Hence there is no critical point inside S,(y = 1 is on the
boundary of S,).

Note that 05, |05, |J9S3J 05y = {(0,0),(1,0),(0,1),(1,1)}.

From the computation about, we need to compute the following values
of f at the following points {(0,0), (1,0),(0,1),(1,1)}.

We have

f(1,1) = =3, f(1,0) = f(0,1) = =2, f(0,0) = 0. Hence, the maximum is

f(0,0) =0 and the minimum is f(1,1) = —3.

(b) Let S denote the region 0 < z, 0 <y and z+y < 1. Since f(z,y) =
r?y? — 22 — 2y, we have V f(z,y) = (2zy* — 2, 22%y — 2). and hence the critical
point is (1, 1). The boundary 95 = S, |J S2 |J S; where S; = {(z,0)|0 < z < 1},
So={0 90 <y <1}, S ={(z,y)0 <z <1l z+y=1}
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The restriction of f to S; is f(z,0) = —22 where 0 < z < 1. Then f'(x,0) =
—2. Hence there is no critical point on 5.

The restriction of f to S, is f(0,y) = 2? — 2x where 0 < y < 1. Then
f'(0,y) = —2. Hence there is no critical point on 5.

Note that x + y = 1 on S;. So y = 1 — 2 on S;. The restriction of f to S
is f(z,1 —z) = 2*(1 —2)? —2x —2(1 — ) = 2*(1 — x)> — 2 where 0 < z < 1.
Then f'(z,1 — ) = 2z(1 — z)? — 22*(1 — z). Hence the critical point on S; is
determined by 2z(1 — z)? — 22%(1 — x) = 0, i.e. 2x(2® — 2z + 1) — 22 + 22° =
22°% — 42+ 20— 202 + 203 = 423 — 622 + 21 = 22(22° —3x+1) = 2x(x—1)(2z—1) = 0.
Soz =0, z=1orz=43. Note that y = 1 — z. We have (z,y) = (0,1),(1,0) or
(l) l).

“Note that 95, |JaS, 855 S, = {(0,0), (1,0), (0, 1), (1, 1)}

From the computation about, we need to compute the following values

of f at the following points {(0,0), (1,0),(0,1),(1,1),(3,3)}-

We have
f(1,1) = =3, f(1,0) = f(0,1) = =2, f(0,0) =0 and f(3,3) = 5 — 1 = 12.
Hence, the maximum is f(0,0) = 0 and the minimum is f(1,1) = —3.



