
Solution to Review Problems for Midterm II
MATH 2850 – 004

(1) (a) Change each of the following points from rectangular coordinates to
cylindrical coordinates and spherical coordinates:

(2,−1, 2), (2,−2,−3) .

(b) Convert the equation cos(φ) = sin(θ) into rectangular coordinates.
(c) Convert the equation r cos(θ) = z into rectangular coordinates.

Solution. (a) (2,−1,−2): Since r =
√

x2 + y2 =
√

22 + (−1)2 =
√

5 and tan θ =
y
x

= −1
2

, the point in cylindrical coordinates is
(√

5, 2π − arctan
(

1
2

)
,−2

)
. Sim-

ilarly,
ρ =

√
x2 + y2 + z2 =

√
22 + (−1)2 + (−2)2 = 3 ,

tan θ = y
x

= −1
2

and cos φ = z
ρ

= 2
3

so the point in spherical coordinates is(
3, 2π − arctan

(
1
2

)
, arccos

(
2
3

))
.

(2,−2,−3): Since r =
√

x2 + y2 =
√

22 + (−2)2 =
√

8 and tan θ = y
x

=
−2
2

= −1, the point in cylindrical coordinates is
(√

5, 2π − arctan (1) ,−3
)

=(√
5, 7

4
π,−3

)
. Similarly,

ρ =
√

x2 + y2 + z2 =
√

22 + (−2)2 + (3)2 =
√

17 ,

tan θ = y
x

= −1 and cos φ = z
ρ

= −2√
17

so the point in spherical coordinates is(√
17, 7

4
π, π − arccos 2√

17

)
.

(b) Since cos(φ) = z
ρ

= z√
x2+y2+z2

, sin(θ) = y
ρ sin(φ)

= y√
x2+y2+z2

√
1−cos(φ)2

= y√
x2+y2+z2

r
1− z2

x2+y2+z2

= y√
x2+y2

. The equation cos(φ) =

sin(θ) is z√
x2+y2+z2

= y√
x2+y2

in rectangular coordinates.

(c) Since y = r cos(θ), the equation r cos(θ) = z is y = z in rectangular
coordinates.

(2) Find the arc-length of the curve r(t) = 〈√2t, et, e−t〉 when 0 ≤ t ≤ ln(2).
(There is a typo in the original problem. r(t) should be 〈√2t, et, e−t〉.)
Solution. Given r(t) = 〈√2t, et, e−t〉, we have r′(t) = 〈√2, et,−e−t〉 and |r′(t)| =√

2 + e−2t + e2t =
√

(e−t + et)2 = e−t + et. Hence the arc-length of the curve
r(t) = 〈√2t, et, e−t〉 between 0 ≤ t ≤ ln(2) is

∫ ln(2)

0
|r′(t)|dt =

∫ ln(2)

0
(e−t + et)dt =

−e−t + et|ln(2)
0 = −e− ln(2) + eln(2) − (−1 + 1) = −1

2
+ 2 = 3

2
. Note that e− ln(2) =

1
eln(2) = 1

2
.
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(3) (a) Find parametric equations for the tangent line to the curve r(t) =

〈t3, t, t3〉 at the point (−1, 1,−1).
(b) At what point on the curve r(t) = 〈t3, t, t3〉 is the normal plane (this

is the plane that is perpendicular to the tangent line) parallel to the
plane 24x + 2y + 24z = 3?

Solution. (a) Note that r(t) = 〈t3, t, t3〉. We have r(−1) = 〈−1, 1,−1〉. Taking
the derivative of r(t), we get r′(t) = 〈3t2, 1, 3t3〉. Thus the tangent vector at
t = −1 is r′(−1) = 〈3, 1, 3〉. Therefore parametric equations for the tangent
line is x = −1 + 3t, y = 1 + t and z = −1 + 3t.

(b) The tangent vector at any time t is r′(t) = 〈3t2, 1, 3t3〉. The normal
vector of the normal plane is parallel to r′(t) = 〈3t2, 1, 3t3〉.

The normal vector of 24x + 2y + 24z = 3 is 〈24, 2, 24〉. So 24
3t2

= 2
1

= 24
3t2

. This
implies that 3t2 = 12. So t = ±2. On the curve r(t) = 〈t3, t, t3〉, the normal
plane at the points r(2) = 〈8, 2, 8〉 and r(−2) = 〈−8, 2,−8〉 are parallel to the
plane 24x + 2y + 24z = 3.

(4) Find the unit tangent, unit normal, binormal vectors and curvature of the
curve r(t) = 〈4t, cos(3t), sin(3t)〉.
Solution. Given r(t) = 〈4t, cos(3t), sin(3t)〉, we have r′(t) = 〈4,−3 sin(3t), 3 cos(3t)〉
and |r′(t)| =

√
16 + 9 sin2(3t) + 9 cos2(3t) =

√
25 = 5. So the unit tangent vec-

tor is T (t) = r′(t)
|r′(t)| = 1

5
〈4,−3 sin(3t), 3 cos(3t)〉.

Now T ′(t) = 1
5
〈0,−9 cos(3t),−9 sin(3t)〉 and |T ′(t)| = 9

5
. So the unit normal

vector is N(t) = T ′(t)
|T ′(t)| = 〈0,− cos(3t),− sin(3t)〉.

The binormal vector is

B(t) = T (t)×N(t) =

∣∣∣∣∣∣∣

−→
i

−→
j

−→
k

4
5

−3 sin(3t)
5

3 cos(3t)
5

0 − cos(3t) − sin(3t)

∣∣∣∣∣∣∣

=

∣∣∣∣
−3 sin(3t)

5
3 cos(3t)

5

− cos(3t) − sin(3t)

∣∣∣∣
−→
i −

∣∣∣∣
4
5

3 cos(3t)
5

0 − sin(3t)

∣∣∣∣
−→
j +

∣∣∣∣
4
5

−3 sin(3t)
5

0 − cos(3t)

∣∣∣∣
−→
k

= 〈3
5
,−4

5
sin(3t),−4

5
cos(3t)〉.

The curvature k(t) = |T ′(t)|
|r′(t)| =

9
5

5
= 9

25
.
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(5) Find the linear approximation of the function f(x, y, z) =
√

x2 + y2 + z2 at
(1, 2, 2) and use it to estimate

√
(1.1)2 + (2.1)2 + (1.9)2.

Solution. The partial derivatives are fx(x, y, z) = x√
x2+y2+z2

, fy(x, y, z) = y√
x2+y2+z2

,

fy(x, y, z) = z√
x2+y2+z2

, fx(1, 2, 2) = 1
3

and fy(1, 2, 2) = 2
3

and fz(1, 2, 2) = 2
3
.

The linear approximation of f(x, y, z) at (1, 2, 2) is

L(x, y, z) = f(1, 2, 2) + fx(1, 2, 2)(x− 1) + fy(1, 2, 2)(y − 2) + fz(1, 2, 2)(z − 2)

= 3 +
1

3
(x− 1) +

2

3
(y − 2) +

2

3
(z − 2).

Thus L(1.1, 2.1, 1.9) = 3+ 1
3
(1.1−1)+ 2

3
(2.1−2)+ 2

3
(1.9−2) = 3+ .1+.2−.2

3
= 3+ .1

3
≈

3.033. Hence
√

(1.1)2 + (2.1)2 + (1.9)2 is about 3.033.

(6) (a) Find the equation for the plane tangent to the surface z = 3x2− y2 + 2x

at (1,−2, 1).

(b) Find the equation for the plane tangent to the surface x2 +xy2 +xyz = 4

at (1, 1, 2).

(c) Find the equation for the line normal to the surface x2 + xy2 + xyz = 4

at (1, 1, 2).

(d) Find the points on the sphere x2 + y2 + z2 = 1 where the tangent plane
is parallel to the plane 2x + y − 3z = 2.

(e) Find the points on the sphere (x + 1)2 + (y − 1)2 + z2 = 1 where the
tangent plane is parallel to the plane 2x + 2y − z = 1.

Solution. (a) Let f(x, y) = 3x2 − y2 + 2x. We have fx = 6x + 2, fy = −2y,
fx(1,−2) = 8 and fy(1,−2) = 4. The equation of the tangent plane through
the point (1,−2, 1) is

z = f(1,−2) + fx(1,−2)(x− 1) + fy(1,−2)(y + 2)

= 1 + 8(x− 1) + 4(y + 2) = 8x + 4y + 1.

(b) In general, the normal vector for the tangent plane to the level surface
of F (x, y, z) = k at the point (a, b, c) is ∇F (a, b, c).

The surface x2+xy2+xyz = 4 can be rewritten as F (x, y, z) = x2+xy2+xyz =

4, ∇F (x, y, z) = 〈2x + y2 + yz, 2xy + xz, xy〉 and
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∇F (1, 1, 2) = 〈5, 4, 1〉 Thus the equation of the tangent plane to the surface
x2 + xy2 + xyz = 4 at the point (1, 1, 2) is
〈5, 4, 1〉 · 〈x− 1, y − 1, z − 2〉 = 0 which yields
5x− 5 + 4y − 4 + z − 2 = 0. It can be simplified as 5x + 4y + z − 11 = 0.

(c) The normal line equation at (1, 1, 2) is x = 1+5t, y = 1+4t and z = 2+t.

(d) Recall that the equation of the tangent plane at any point (x0, y0, z0)

on the sphere x2 + y2 + z2 = 1 is the equation x0x + y0y + z0z = 1. (Note
that the equation of the tangent plane at any point (x0, y0, z0) on the sphere
x2+y2+z2 = R2 is the equation x0x+y0y+z0z = R.) The plane x0x+y0y+z0z = 1

is parallel to the plane 2x + y − 3z = 2 if their normal vectors are parallel,
that is,

x0

2
=

y0

1
=

z0

−3
= c.

Hence x0 = 2c, y0 = c and z0 = −3c. Recall that (x0, y0, z0) ia a point on the
sphere x2 + y2 + z2 = 1. Thus x2

0 + y2
0 + z2

0 = 4c2 + c2 + 9c2 = 1, 14c2 = 1 and
c = ± 1√

14
. We have (x0, y0, z0) = ( 2√

14
, 1√

14
, −3√

14
) or (x0, y0, z0) = (− 2√

14
,− 1√

14
, 3√

14
).

(e) Recall that the equation of the tangent plane at any point (x0, y0, z0)

on the sphere (x + 1)2 + (y− 1)2 + z2 = 1 is the equation (x0 + 1)(x + 1) + (y0−
1)(y−1)+z0z = 1. The plane (x0 +1)(x+1)+(y0−1)(y−1)+z0z = 1 is parallel
to the plane 2x + 2y − z = 1 if there normal vectors are parallel, that is,

x0 + 1

2
=

y0 − 1

2
=

z0

−1
= c.

Hence x0 + 1 = 2c, y0 − 1 = 2c and z0 = −c. Recall that (x0, y0, z0) is a point
on the sphere (x + 1)2 + (y − 1)2 + z2 = 1. Thus (x0 + 1)2 + (y0 − 1)2 + z2

0 =

4c2 + 4c2 + c2 = 1, 9c2 = 1 and c = ±1
3
. Recall that x0 = 2c− 1, y0 = 2c + 1 and

z0 = −c. We have (x0, y0, z0) = (−1
3
, 5

3
,−1

3
) or (x0, y0, z0) = (−5

3
, 1

3
, 1

3
).

(7) Find the domain and first partial derivatives of the following functions.
(a) f(s, t) = (s2 + t2) sin(s2 − t2).

(b) g(x, y) = 2x−3y
x+2y

.

(c) h(x, y) = ln(x+y
x−y

).
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(d) k(x, t) = (3x+4t)e(x2−t2)

x2+t2
.

Solution. (a) f(s, t) = (s2 + t2) sin(s2 − t2).
The domain of f is {(s, t)|s ∈ R and t ∈ R} We have

fs = 2s sin(s2 − t2) + 2s(s2 + t2) cos(s2 − t2)

and
ft = 2t sin(s2 − t2)− 2t(s2 + t2) cos(s2 − t2).

(b) g(x, y) = 2x−3y
x+2y

.
The domain of g is {(x, y)|x + 2y 6= 0}

We have

gx =
2(x + 2y)− (2x− 3y)

(x + 2y)2
=

7y

(x + 2y)2

and

gy =
−3(x + 2y)− 2(2x− 3y)

(x + 2y)2
=

−7x

(x + 2y)2
.

(c) h(x, y) = ln(x+y
x−y

).
The domain of g is {(x, y)|x− y 6= 0 and x+y

x−y
> 0}

Note that h(x, y) = ln(x+y
x−y

) = ln(x + y)− ln(x− y). We have

hx =
1

x + y
− 1

x− y
=

−2y

x2 − y2

and
hy =

1

x + y
+

1

x− y
=

2x

x2 − y2
.

(d) k(x, t) = (3x+4t)e(x2−t2)

x2+t2
.

The domain of k is {(x, t)|x2 + t2 6= 0}, that is, {(x, t)|(x, t) 6= (0, 0)}.
Instead of finding its derivative by brutal force, we will use the logarithm

differentiation.
Note that ln(k(x, t)) = ln( (3x+4t)e(x2−t2)

x2+t2
) = ln(3x + 4t) + x2− t2− ln(x2 + t2). Thus

(ln(k(x, t)))x = (ln(3x + 4t) + x2 − t2 − ln(x2 + t2))x,

k(x, t)x

k(x, t)
=

3

3x + 4t
+ 2x− 2x

x2 + t2

and

kx = (
3

3x + 4t
+ 2x− 2x

x2 + t2
)
(3x + 4t)e(x2−t2)

x2 + t2
,
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Similarly,
kt

k
=

4

3x + 4t
− 2t− 2t

x2 + t2

and

kt = (
4

3x + 4t
− 2t− 2t

x2 + t2
)
(3x + 4t)e(x2−t2)

x2 + t2
.

(8) (a) Verify that u = 1√
x2+y2+z2

is a solution of uxx + uyy + uzz = 0.

(b) Show that v(x, t) = f(x+2t)+g(x−2t) is a solution of the wave equation
vtt = 4vxx.

Solution. (a) We have u = (x2 + y2 + z2)−
1
2 ,

ux = −x(x2 + y2 + z2)−
3
2 , uxx = −(x2 + y2 + z2)−

3
2 − 3x2(x2 + y2 + z2)−

5
2 .

The expression is symmetric in x, y and z. Hence we have

uyy = (x2 + y2 + z2)−
3
2 − 3y2(x2 + y2 + z2)−

5
2

and
uzz = (x2 + y2 + z2)−

3
2 − 3z2(x2 + y2 + z2)−

5
2 .

Thus uxx + uyy + uzz = 3(x2 + y2 + z2)−
3
2 − 3(x2 + y2 + z2)(x2 + y2 + z2)−

5
2 =

3(x2 + y2 + z2)−
3
2 − 3(x2 + y2 + z2)−

3
2 = 0.

(b) Using v(x, t) = f(x + 2t) + g(x− 2t) and chain rule, we have
vx = f ′(x + 2t) + g′(x− 2t), vxx = f ′′(x + 2t) + g′′(x− 2t),
vt = 2f ′(x + 2t)− 2g′(x− 2t), vtt = 4f ′′(x + 2t) + 4g′′(x− 2t).
Thus vtt − 4vxx = 4f ′′(x + 2t) + 4g′′(x− 2t)− 4(f ′′(x + 2t) + g′′(x− 2t)) = 0.

(9) Use implicit differentiation to find zx and zy if xyz = ex2+y2+z2.

Solution. Assume z = z(x, y), we have xyz(x, y) = ex2+y2+(z(x,y))2.
So (xyz(x, y))x = (ex2+y2+(z(x,y))2)x,
yz(x, y) + xyzx = ex2+y2+(z(x,y))2(2x + 2zzx),
xyzx − 2ex2+y2+z2

zzx = 2ex2+y2+z2
x− yz

and zx = 2ex2+y2+z2
x−yz

xy−2ex2+y2+z2z
.

Similarly, (xyz(x, y))y = (ex2+y2+(z(x,y))2)y,
xz(x, y) + xyzy = ex2+y2+(z(x,y))2(2y + 2zzy),
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xyzy − 2ex2+y2+z2
zzy = 2ex2+y2+z2

y − xz

and zy = 2ex2+y2+z2
y−xz

xy−2ex2+y2+z2y
.

(10) Suppose that over a certain region of plane the electrical potential is given
by V (x, y) = x2 − xy + y2.
(a) Find ∇V (x, y).
(b) Find the direction of the greatest decrease in the electrical potential

at the point (1, 1). What is the magnitude of the greatest decrease?
(c) Find the direction of the greatest increase in the electrical potential at

the point (1, 1). What is the magnitude of the greatest increase?
(d) Find a direction at the point (1, 1) in which the temperature does not

increase or decrease.
(e) Find the rate of change of V at (1, 1) in the direction 〈3,−4〉.

Solution. (a) We have

∇V (x, y) = 〈Vx(x, y), Vy(x, y)〉 = 〈(x2 − xy + y2)x, (x
2 − xy + y2)y〉 = 〈2x− y,−x + 2y〉

(b) Since

∇V (x, y) = 〈2x− y,−x + 2y〉
the direction of the greatest decrease in electrical potential is

−∇V (1, 1) = −〈1, 1〉
and the magnitude is −‖∇V (1, 1)‖ = −√2.

(c) The direction of greatest increase in electrical potential is

∇V (1, 1) = 〈1, 1〉
and the magnitude is ‖∇V (1, 1)‖ =

√
2.

(d) If −→u is a direction at which the electrical potential does not increase
or decrease, then D−→u V (1, 1) = ∇V (1, 1) · −→u = 0. This is equivalent to say-
ing that −→u is perpendicular to ∇V (1, 1). If −→u = u1

−→
i + u2

−→
j then we have

0 = 〈1, 1〉 · −→u = u1 + u2. We may choose −→u = 〈1,−1〉. Therefore, the electrical
potential does not change in the direction 〈1,−1〉.
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(e) The unit vector in the direction 〈3,−4〉 is −→u = 1
5
〈3,−4〉. Thus the rate of

change of V at (1, 1) in the direction 〈3,−4〉 is

∇V (1, 1) · −→u = 〈1, 1〉 · 1
5
〈3,−4〉 = −1

5
.

(11) Find the local maxima, local minima and saddle points of the following
functions. Decide if the local maxima or minima is global maxima or
minima. Explain.
(a) f(x, y) = 3x2y + y3 − 3x2 − 3y2

(b) f(x, y) = x2 + y3 − 3xy

(c) f(x, y) = xy + ln(x) + y2 − 10, x > 0

Solution. (a) We have ∂f
∂x

= 6xy − 6x, ∂f
∂y

= 3x2 + 3y2 − 6y. Thus (x, y) is a
stationary point if 6x(y − 1) = 0, 3(x2 + y2 − 2y) = 0 From the first equation,
we have x = 0 or y = 1. Suppose x = 0, we have y = 0 or y = 2 from the
second equation. Suppose y = 1, we have x = 1 or x = −1 from the second
equation. Thus the stationary points of f are (0, 0), (0, 2), (1, 1) and (−1, 1).

The second order partial derivatives are fxx = 6y − 6, fxy = fyx = 6x and
fyy = 6y − 6.

Thus the hessian matrix

[D2f(x, y)]2×2 =

(
6y − 6 6x

6x 6y − 6

)

At (0, 0), the hessian matrix is

[D2f(0, 0)]2×2 =

(
−6 0

0 −6

)
.

We have fxx(0, 0) = −6 < 0 and D = fxx(0, 0)fyy(0, 0)− (fxy(0, 0))2 = 36 > 0 This
implies that D2f(0, 0) negative definite. Thus (0, 0) is a local maximizer
with local minimum f(0, 0) = 0.

At (0, 2), the hessian matrix is

[D2f(0, 2)]2×2 =

(
6 0

0 6

)
.



Solution: page 9 of 11 MATH 2850 – 004

We have fxx(0, 2) = 6 > 0 and D = fxx(0, 2)fyy(0, 2) − (fxy(0, 2))2 = 36 > 0 This
implies that D2f(0, 2) positive definite. Thus (0, 2) is a local minimizer with
local minimum f(0, 2) = −4.

At (1, 1), the hessian matrix is

[D2f(1, 1)]2×2 =

(
0 6

6 0

)
.

We have fxx(1, 1) = 0 and D = fxx(1, 1)fyy(1, 1) − (fxy(1, 1))2 = −36 < 0 This
implies that D2f(1, 1) is indefinite. Thus (1, 1) is a saddle point.

At (−1, 1), the hessian matrix is

[D2f(1, 1)]2×2 =

(
0 −6

−6 0

)

We have fxx(−1, 1) = 0 and D = fxx(−1, 1)fyy(−1, 1) − (fxy(−1, 1))2 = −36 < 0.
This implies that D2f(−1, 1) is indefinite. Thus (−1, 1) is a saddle point.

(b) The system of equations

fx(x, y) = 2x− 3y = 0 fy(x, y) = 3y2 − 3x = 0

implies that x = 3
2
y and 3

(
y2− 3

2
y
)

= 2y
(
y− 3

2

)
= 0. Thus, (0, 0) and (9/4, 3/2)

are the critical points. We also have fxx = 2, fxy = fyx = −3 and fyy = 6y.

(D2f(x, y)) =

(
2 −3

−3 6y

)

Since

D = fxxfyy − f 2
xy = (2)(6y)− (−3)2 = 12y − 9,

Det(D2f(0, 0)) = −9 < 0,

Det(D2f(9/4, 3/2)) = 18 > 0,

the second derivative test establishes that f has a saddle point at (0, 0) and
a local minimum at (9/4, 3/2). Because limy→−∞ f(0, y) = limy→−∞ y3 = −∞,
we see that (9/4, 3/2) is not a global minimum.

(c)Solving the system of equations

fx(x, y) = y + 1
x

= 0 fy(x, y) = x + 2y = 0 ,

we see that x = −2y and y− 1
2y

= 2y2−1
2y

= 0. Hence, the only critical point in
the region x > 0 is (

√
2,−1/

√
2). We also have fxx = − 1

x2 , fxy = fyx = 1 and
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fyy = 2.

(D2f(x, y)) = (
− 1

x2 1

1 2
)

D = fxxfyy − f 2
xy =

(− 1
x2

)
(2)− (2)2 < 0

the second derivative indicates that (
√

2,−1/
√

2) f is a saddle point.

(12) Find rigorously the global maximum/minimum and global maximizer/minimizer
of the following functions subject to the given constraint.
(a) f(x, y) = x2y2 − 2x− 2y, 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.
(b) f(x, y) = x2y2 − 2x− 2y, 0 ≤ x, 0 ≤ y and x + y ≤ 1.

Solution. (a) Let S denote the region 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Since
f(x, y) = x2y2 − 2x − 2y, we have ∇f(x, y) = (2xy2 − 2, 2x2y − 2). and hence
the critical point is (1, 1). In the following, we use the notation ∂E to
denote the boundary of a set E. The boundary ∂S = S1

⋃
S2

⋃
S3

⋃
S4 where

S1 = {(x, 0)|0 ≤ x ≤ 1}, S2 = {(0, y)|0 ≤ y ≤ 1} , S3 = {(x, 1)|0 ≤ x ≤ 1} and
S4 = {(1, y)|0 ≤ y ≤ 1}.

The restriction of f to S1 is f(x, 0) = −2x where 0 ≤ x ≤ 1. Then f ′(x, 0) =

−2. Hence there is no stationary point on S1.
The restriction of f to S2 is f(0, y) = x2 − 2x where 0 ≤ y ≤ 1. Then

f ′(0, y) = −2. Hence there is no critical point on S2.
The restriction of f to S3 is f(x, 1) = x2 − 2x − 2 where 0 ≤ x ≤ 1. Then

f ′(x, 0) = 2x − 2. Hence there is no critical point inside S3(x = 1 is on the
boundary of S3).

The restriction of f to S4 is f(1, y) = y2 − 2y − 2 where 0 ≤ y ≤ 1. Then
f ′(0, y) = 2y − 2. Hence there is no critical point inside S4(y = 1 is on the
boundary of S4).

Note that ∂S1

⋃
∂S2

⋃
∂S3

⋃
∂S4 = {(0, 0), (1, 0), (0, 1), (1, 1)}.

From the computation about, we need to compute the following values
of f at the following points {(0, 0), (1, 0), (0, 1), (1, 1)}.
We have

f(1, 1) = −3 , f(1, 0) = f(0, 1) = −2, f(0, 0) = 0. Hence, the maximum is
f(0, 0) = 0 and the minimum is f(1, 1) = −3.

(b) Let S denote the region 0 ≤ x, 0 ≤ y and x + y ≤ 1. Since f(x, y) =

x2y2 − 2x− 2y, we have ∇f(x, y) = (2xy2 − 2, 2x2y − 2). and hence the critical
point is (1, 1). The boundary ∂S = S1

⋃
S2

⋃
S3 where S1 = {(x, 0)|0 ≤ x ≤ 1},

S2 = {(0, y)|0 ≤ y ≤ 1} , S3 = {(x, y)|0 ≤ x ≤ 1, x + y = 1}.
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The restriction of f to S1 is f(x, 0) = −2x where 0 ≤ x ≤ 1. Then f ′(x, 0) =

−2. Hence there is no critical point on S1.
The restriction of f to S2 is f(0, y) = x2 − 2x where 0 ≤ y ≤ 1. Then

f ′(0, y) = −2. Hence there is no critical point on S2.
Note that x + y = 1 on S3. So y = 1 − x on S3. The restriction of f to S3

is f(x, 1 − x) = x2(1 − x)2 − 2x − 2(1 − x) = x2(1 − x)2 − 2 where 0 ≤ x ≤ 1.
Then f ′(x, 1 − x) = 2x(1 − x)2 − 2x2(1 − x). Hence the critical point on S3 is
determined by 2x(1 − x)2 − 2x2(1 − x) = 0, i.e. 2x(x2 − 2x + 1) − 2x2 + 2x3 =

2x3−4x2+2x−2x2+2x3 = 4x3−6x2+2x = 2x(2x2−3x+1) = 2x(x−1)(2x−1) = 0.
So x = 0, x = 1 or x = 1

2
. Note that y = 1− x. We have (x, y) = (0, 1), (1, 0) or

(1
2
, 1

2
).

Note that ∂S1

⋃
∂S2

⋃
∂S3

⋃
∂S4 = {(0, 0), (1, 0), (0, 1), (1, 1)}.

From the computation about, we need to compute the following values
of f at the following points {(0, 0), (1, 0), (0, 1), (1, 1), (1

2
, 1

2
)}.

We have
f(1, 1) = −3 , f(1, 0) = f(0, 1) = −2, f(0, 0) = 0 and f(1

2
, 1

2
) = 1

16
− 1 = 15

16
.

Hence, the maximum is f(0, 0) = 0 and the minimum is f(1, 1) = −3.


