Review Problems for Midterm III

MATH 2850-004

The detail of the information about the second midterm can be found at http://www.math.utoledo.edu/~mtsui/calc06sp/exam/midterm3.html You should also review the homework and quiz problems to prepare for the midterm.
This midterm will cover 15.8 Lagrange multipliers, Chapter 16 (except 16.9) and 17.1-17.2.
(1) Use Lagrange multipliers to find the maximum or minimum values of f subject to the given constraint.
(a) $f(x, y)=x y,\left(1+x^{2}\right)\left(1+y^{2}\right)=4$.
(b) $f(x, y, z)=x^{2}-y^{2}, x^{2}+y^{2}=2$
(c) $f(x, y, z)=x+y+z, x^{2}+y^{2}+z^{2}=1$.
(2) Using Riemann sums with two subdivisions in each direction, find upper and lower bounds for the volume under the graph of $f(x, y)=1+x^{2}+y^{2}$ above the rectangle R with $0 \leq x \leq 2,0 \leq y \leq 2$.
(3) Compute the following iterated integrals.
(a) $\iint_{D} \frac{6 x}{y^{3}+1} d A$ where $D=\{(x, y) \mid 0 \leq x \leq y, 0 \leq y \leq 1\}$.
(b) $\int_{0}^{1} \int_{\sqrt{y}}^{1} \frac{y e^{x^{2}}}{x^{3}} d x d y$
(c) $\int_{0}^{1} \int_{x}^{1} \cos \left(y^{2}\right) d y d x$
(d) $\int_{-3}^{0} \int_{0}^{\sqrt{9-y^{2}}} \sqrt{x^{2}+y^{2}} d x d y$
(e) $\int_{0}^{2} \int_{-\sqrt{4-x^{2}}}^{0} e^{\left.-x^{2}-y^{2}\right)} d y d x$
(f) $\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} \int_{x^{2}+y^{2}}^{\sqrt{x^{2}+y^{2}}} x y z d z d x d y$
(g) $\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{x^{2}+y^{2}}^{2-y^{2}}\left(x^{2}+y^{2}\right)^{\frac{3}{2}} d z d y d x$
(h) $\int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} \int_{-\sqrt{4-x^{2}-y^{2}}}^{-\sqrt{4-x^{2}-y^{2}}} y^{2} \sqrt{x^{2}+y^{2}+z^{2}} d z d x d y$
(i) $\int_{0}^{3} \int_{0}^{\sqrt{9-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{18-x^{2}-y^{2}}}\left(x^{2}+y^{2}+z^{2}\right) d z d x d y$
(4) Find the volume of the following regions:
(a) The solid bounded by the surface $z=x \sqrt{x^{2}+y}$ and the planes $x=0$, $x=1, y=0, y=1$ and $z=0$.
(b) The solid that lies between the sphere $x^{2}+y^{2}+z^{2}=4$, above the $x-y$ plane, and below the cone $z=\sqrt{x^{2}+y^{2}}$.
(c) The solid bounded by the plane $x+y+z=3, x=0, y=0$ and $z=0$.
(d) The region bounded by the cylinder $x^{2}+y^{2}=4$ and the plane $z=0$ and $y+z=3$.
(5) Find the area of the following surfaces.
(a) The cone $z=\sqrt{x^{2}+y^{2}}$ between the planes $z=1$ and $z=2$
(b) Given by $\left\{(x, y, z) \mid x^{2}+y^{2}=1,0 \leq z \leq x y\right\}$.
(6) Rewrite the integral $\int_{-1}^{1} \int_{x^{2}}^{1} \int_{0}^{1-y} f(x, y, z) d z d y d x$ as an iterated integral in the order of $d x d y d z$
(7) Evaluate the following line integrals.
(a) $\int_{C} 2 z d s$ where C is given by $x=\cos (t), y=\sin (t), z=t, 0 \leq \pi$.
(b) Evaluate $\int_{C} F \cdot d r$ where $F=<y, x>$ and C is given by $r(t)=\left(t, t^{2}\right)$ where $0 \leq t \leq 1$.
(c) $\int_{C} y d x+x d y$ where C is the line between $A=(1,1)$ where $B=(-1,5)$.
(d) $\int_{C} F \cdot d r$ where $F=<x, y, z>$ and C is given by $r(t)=(\cos (t), \sin (t), t)$ where $0 \leq t \leq \pi$.
(e) $\int_{C} F \cdot d r$ where $F=<x, y, z>$ and C is the line between $A=(1,1,1)$ where $B=(-1,0,3)$.
(8) Sketch the gradient vector field of $f(x, y)=-x y$.
(9) Sketch the gradient vector field of $f(x, y, z)=-\frac{x^{2}}{2}$.
(10) Consider a thin plate that occupies the region D bounded by the parabola $y=1-x^{2}, x=1$ and $y=1$ in the first quadrant with density function $\rho(x, y)=y$.
(a) Find the mass of the thin plate.
(b) Find the center of mass of the thin plate.

