
Solution to Review Problems for Midterm III
MATH 2850 – 004

The detail of the information about the second midterm can be found at
http://www.math.utoledo.edu/∼mtsui/calc06sp/exam/midterm3.html
You should also review the homework and quiz problems to prepare for the
midterm.
This midterm will cover 15.8 Lagrange multipliers , Chapter 16 (except
16.9) and 17.1-17.2.

(1) Use Lagrange multipliers to find the maximum or minimum values of f

subject to the given constraint.
(a) f(x, y) = xy, (1 + x2)(1 + y2) = 4.

Solution. The constraint is g(x, y) = (1+x2)(1+y2) = 4 and the function
is f(x, y) = xy. We have ∇f(x, y) = (y, x) and ∇g(x, y) = (2x(1+ y2), 2y(1+

y2)). The equation ∇f(x, y) = λ∇g(x, y) is the same as y = 2λx(1 + x2)

and x = 2λy(1 + y2). Thus the optimizer (x, y) satisfy

(1) y = 2λx(1 + x2)

(2) x = 2λy(1 + y2)

(3) (1 + x2)(1 + y2) = 4

Multiplying the first two equations, we have xy = 4λ2xy(1 + x2)(1 + y2).
The constraint equation (1 + x2)(1 + y2) = 4 implies xy = 16λ2xy. Thus
xy = 0 or λ = ±1

4
. But xy = 0, y = 2λx(1 + x2) and x = 2λy(1 + y2) imply

(x, y) = (0, 0) which doesn’t satisfy the constraint equation. Suppose
λ = 1

4
, we have y = 1

2
x(1 + x2) and x = 1

2
y(1 + x2) = 1

4
x(1 + x2)2. Thus

x = 0 or (1 + x2)2 = 4. Thus (x, y) = (1, 1), (−1,−1). Suppose λ = −1
4
,

we have y = −1
2
x(1 + x2) and x = −1

2
y(1 + x2) = 1

4
x(1 + x2)2. Thus x = 0

or (1 + x2)2 = 4. This implies (x, y) = (1,−1), (−1, 1). We have f(1, 1) =

f(−1,−1) = 1 and f(1,−1) = f(−1, 1) = −1. Thus the maximizers are
(1, 1) and (−1,−1) with maximum 1. The minimizers are (−1, 1) and
(1,−1) with minimum −1.

(b) f(x, y, z) = x2 − y2, x2 + y2 = 2

Solution. Let f(x, y) = x2 − y2 and g(x, y) = x2 + y2 = 2. The necessary
conditions for the optimizer (x, y) are
∇f(x, y) = λ∇g(x, y) and the constraint equations x2 + y2 = 2 which are:
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Since ∇f(x, y) = (2x,−2y) and ∇g(x, y) = (2x, 2y), thus (x, y) must sat-
isfy

2x = 2λx(4)

−2y = 2λy(5)

x2 + y2 = 2(6)

From (4), (5) , we get 4x2 + 4y2 = 4λ2(x2 + y2). Since
x2 + y2 = 2m we have λ2 = 1. So λ = ±1. If lambda = 1, then eq(4)
is always true and we get y = 0 by eq(5). Using x2 + y2 = 2, we get
x = ±

√
2.

If lambda = −1, then eq(5) is always true and we get x = 0 by eq(4).
Using x2 + y2 = 2, we get y = ±

√
2.

So the candidates are (
√

2, 0), (−
√

2, 0), (0,
√

2, 0) and (0,
√

2, 0).
So f((

√
2, 0)) = f((−

√
2, 0)) = 2 and f((0,

√
2, 0)) = f((0,

√
2, 0)) = −2.

Thus the maximum is 2, the minimum is −2, the maximizers are
(
√

2, 0), (−
√

2, 0), and the minimizers are (0,
√

2, 0) and (0,
√

2, 0).

(c) f(x, y, z) = x + y + z, x2 + y2 + z2 = 1.

Solution. Let f(x, y, z) = x + y + z and g(x, y, z) = x2 + y2 + z2 = 1.
We have ∇f(x, y, z) = (1, 1, 1) and∇g(x, y, z) = (2x, 2y, 2z).
The necessary conditions for the optimizer (x, y, z) are
∇f(x, y, z) = λ∇g(x, y, z) and the constraint equations which are:

1 = 2λx(7)

1 = 2λy(8)

1 = 2λz(9)

x2 + y2 + z2 = 1(10)

From (7),(8) (9) and (10), we know that λ 6= 0 , x = 1
2λ

, y = 1
2λ

and z = 1
2λ

.
Plugging into (10), we get 1

4λ2 + 1
4λ2 + 1

4λ2 = 1 , 3
4λ2 = 1 and λ = ±

√
3

2
. So

(x, y, z) = ( 1
2λ

, 1
2λ

, 1
2λ

) = ( 1√
3
, 1√

3
, 1√

3
) or (x, y, z) = ((− 1√

3
,− 1√

3
,− 1√

3
).

We have f(( 1√
3
, 1√

3
, 1√

3
)) = 3√

3
=
√

3 and f((− 1√
3
,− 1√

3
,− 1√

3
)) = − 3√

3
= −

√
3.

Thus the maximizers are ( 1√
3
, 1√

3
, 1√

3
) with maximum

√
3. The minimiz-

ers are (− 1√
3
,− 1√

3
,− 1√

3
) with minimum −

√
3.
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(2) Using Riemann sums with two subdivisions in each direction, find upper
and lower bounds for the volume under the graph of f(x, y) = 1 + x2 + y2

above the rectangle R with 0 ≤ x ≤ 2, 0 ≤ y ≤ 2.

Solution. Let f(x, y) = 1 + x2 + y2. We have fx = 2x ≥ 0 and fy = 2y ≥ 0 in the
rectangle R. The lower estimate is f(0, 0) · 1+f(1, 0) · 1+f(0, 1) · 1+f(1, 1) · 1 =

1 + 2 + 2 + 3 = 8.
The upper estimate is f(1, 1) · 1 + f(1, 2) · 1 + f(2, 1) · 1 + f(2, 2) · 1 = 3 + 5 +

5 + 9 = 22.

(3) Compute the following iterated integrals.
(a)

∫ ∫
D

6x
y3+1

dA where D = {(x, y)|0 ≤ x ≤ y, 0 ≤ y ≤ 1}.

Solution.
∫ ∫

D
6x

y3+1
dA =

∫ 1

0

∫ y

0
6x

y3+1
dxdy =

∫ 1

0
3x2

y3+1

∣∣∣y
0
dx =

∫ 1

0
6 3y2

y3+1
dy. Let

u = y3 + 14. Then du = 3y2dy, y2dy = u
3
du and

∫
3y2

y3+1
dx =

∫
3
3u

du =

ln |u|+ C = ln |y3 + 1|+ C. Hence
∫ ∫

D
6x

y3+1
dA = ln |y3 + 1||

∣∣∣1
0

= ln(2).

(b)
∫ 1

0

∫ 1
√

y
yex2

x3 dxdy

Let D = {(x, y)|√y ≤ x ≤ 1, 0 ≤ y ≤ 1} Then 0 ≤ y ≤ x2 and 0 ≤ x ≤ 1. So
D is the same as {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ x2}.

We have
∫ 1

0

∫ 1
√

y
yex2

x3 dxdy =
∫ 1

0

∫ x2

0
yex2

x3 dydx =
∫ 1

0
y2ex2

2x3

∣∣∣x2

0
dx =

∫ 1

0
xex2

2
dx =

ex2

4
|10 = e

4
− 1

4
.

(c)
∫ 1

0

∫ 1

x
cos(y2)dydx

Solution. Let D = {(x, y)|0 ≤ x ≤ 1, x ≤ y ≤ 1}. Since x ≤ y and 0 ≤ x ,
we have 0 ≤ x ≤ y. Since x ≤ y ≤ 1 and 0 ≤ x, we have 0 ≤ y ≤ 1. So D

is the same as {(x, y)|0 ≤ x ≤ y, 0 ≤ y ≤ 1}.
We have

∫ 1

0

∫ 1

x
cos(y2)dydx =

∫ 1

0

∫ y

0
cos(y2)dxdy =

∫ 1

0
x cos(y2)|x0dx =

∫ 1

0
y cos(y2)dy =

sin(y2)
2

|10 = sin(1)
2

.

(d)
∫ 0

−3

∫√9−y2

0

√
x2 + y2dxdy

Solution. The region of integration is {(x, y)0 ≤ x ≤
√

9− y2,−3 ≤ y ≤
0}. The is the region in fourth quadrant. In polar coordinates, it is
R =

{
(r, θ) : 0 ≤ r ≤ 3, −π

2
≤ θ ≤ 0

}
. We also have (

√
x2 + y2 = (r2)

1
2 = r

and
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∫ 0

−3

∫√9−y2

0

√
x2 + y2dxdy =

∫ 0
−π
2

∫ 3

0
r · rdrdθ

=
∫ 0
−π
2

∫ 3

0
r2drdθ =

∫ 2π

0
r2

3
|30dθ = 3θ|0−π

2

= 3π
2

.

(e)
∫ 2

0

∫ 0

−
√

4−x2 e−x2−y2
dydx

Solution. The region of integration is {(x, y)0 ≤ x ≤ 2,−
√

4− x2 ≤ y ≤
0}. The is the region in fourth quadrant. In polar coordinates, it is
R =

{
(r, θ) : 0 ≤ r ≤ 3, −π

2
≤ θ ≤ 0

}
. We also have x2 + y2 = r2 and∫ 2

0

∫ 0

−
√

4−x2 e−x2−y2
dydx =

∫ 0
−π
2

∫ 2

0
e−r2 · rdrdθ

=
∫ 0
−π
2
− e−r2

2

∣∣∣2
0
dθ = −( e−4

2
− 1

2
) · π

2
.

(f)
∫ 1

0

∫√1−y2

0

∫√x2+y2

x2+y2 xyzdzdxdy

Solution. The region of integration is {(x, y, z)0 ≤ x ≤
√

1− y2, 0 ≤ y ≤
1, x2 + y2 ≤ z ≤

√
x2 + y2}. In cylindrical coordinates, it is R =

{
(r, θ, z) :

0 ≤ r ≤ 1, 0 ≤ θ ≤ π
2
, r2 ≤ z ≤ r

}
. Recall that x = r cos(θ), x = r sin(θ) We

have xyz = r cos(θ) · r sin(θ) = r2 cos(θ) · sin(θ) and∫ 1

0

∫√1−y2

0

∫√x2+y2

x2+y2 xyzdzdxdy =
∫ π

2

0

∫ 1

0

∫ r

r2 r2 cos(θ) · sin(θ)z · rdzdrdθ

=
∫ π

2

0

∫ 1

0

∫ r

r2 r3z cos(θ) · sin(θ)dzdrdθ =
∫ π

2

0

∫ 1

0
r3 z2

2
cos(θ) · sin(θ)

∣∣∣r
r2

drdθ

=
∫ π

2

0

∫ 1

0
r3 r2−r4

2
cos(θ) · sin(θ)drdθ

=
∫ π

2

0

∫ 1

0
( r5

2
− r7

2
) cos(θ) · sin(θ)drdθ =

∫ π
2

0
( r6

12
− r8

16
) cos(θ) · sin(θ)

∣∣∣1
0
dθ

=
∫ π

2

0
1
48

cos(θ) · sin(θ)dθ

= 1
96

sin2(θ)
∣∣∣π

2

0
= 1

96
.

(g)
∫ 1

−1

∫ √1−x2

−
√

1−x2

∫ 2−x2−y2

x2+y2 (x2 + y2)
3
2 dzdydx

Solution. The region of integration is {(x, y, z)| − 1 ≤ x ≤ 1,−
√

1− x2 ≤
y ≤

√
1− x2, x2 + y2 ≤ z ≤ 2− x2 − y2}. In cylindrical coordinates, it

is R =
{
(r, θ, z) : 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, r2 ≤ z ≤ 2 − r2

}
. Recall that

x = r cos(θ), x = r sin(θ) We have (x2 + y2)
3
2 = r3 and∫ 1

−1

∫ √1−x2

−
√

1−x2

∫ 2−x2−y2

x2+y2 (x2 + y2)
3
2 dzdydx =

∫ 2π

0

∫ 1

0

∫ 2−r2

r2 r3 · rdzdrdθ

=
∫ 2π

0

∫ 1

0
r4z
∣∣∣2−r2

r2
drdθ

=
∫ 2π

0

∫ 1

0
r4(2− 2r2)drdθ
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=
∫ 2π

0

∫ 1

0
(2r5

5
− 2r7

7
)
∣∣∣1
0
dθ

=
∫ π

2

0
4
35

dθ

= 8π
35

.

(h)
∫ 2

−2

∫√4−y2

0

∫√4−x2−y2

−
√

4−x2−y2
y2
√

x2 + y2 + z2dzdxdy

Solution. In spherical coordinates, the region E = {(x, y, z)|0 ≤ x ≤√
4− y2,−2 ≤ y ≤ 2,−

√
4− x2 − y2 ≤ z ≤

√
4− x2 − y2}

is described by the inequalities 0 ≤ ρ ≤ 2, 0 ≤ θ ≤ ππ and 0 ≤ φ ≤ π.
Note that y = ρ sin(φ) cos(θ) Hence, the integral is

∫ 2

−2

∫ √4−y2

0

∫ √4−x2−y2

−
√

4−x2−y2

y2
√

x2 + y2 + z2dzdxdy

=

∫ π

0

∫ π

0

∫ 2

0

ρ2 sin2(φ) cos2(θ)(ρ) ρ2 sin(φ) dρ dθ dφ

=

∫ π

0

∫ π

0

∫ 2

0

ρ5 sin3(φ) cos2(θ) dρ dθ dφ

=

(∫ π

0

cos2(θ)dθ

)(∫ π

0

sin3(φ) dφ

)(∫ 2

0

ρ5 dρ

)
=

(∫ π

0

1 + cos(2θ)

2
dθ

)(∫ π

0

(1− cos2(φ)) sin(φ) dφ

)(∫ 2

0

ρ5 dρ

)
=

(
(
θ

2
+

sin(2θ)

4
)
∣∣∣π
0

)(
(− cos(φ) +

cos3(φ)

3
)
∣∣∣π
0

)(
ρ6

6

∣∣∣2
0

)
=

π

2
· 4
3
· 64

6
=

64π

9

(i)
∫ 3

0

∫√9−y2

0

∫√18−x2−y2

√
x2+y2

(x2 + y2 + z2)dzdxdy

Solution. In spherical coordinates, the region E = {(x, y, z)|0 ≤ x ≤√
9− y2, 0 ≤ y ≤ 3,

√
x2 + y2 ≤ z ≤

√
18− x2 − y2}

is described by the inequalities 0 ≤ ρ ≤
√

18, 0 ≤ θ ≤ π
2

and 0 ≤ φ ≤ π
4
.

Note that
√

x2 + y2 =
√

18− x2 − y2 if x2 + y2 = 9 and z =
√

x2 + y2 is
φ = π

4
in spherical coordinates.
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Note that x2 + y2 + z2 = ρ2 Hence, the integral is∫ 3

0

∫ √9−y2

0

∫ √18−x2−y2

√
x2+y2

(x2 + y2 + z2)dzdxdy

=

∫ π
4

0

∫ π
2

0

∫ √
18

0

ρ2 · ρ2 sin(φ) dρ dθ dφ

=

∫ π
4

0

∫ π
2

0

∫ √
18

0

ρ4 sin(φ) dρ dθ dφ

=

(∫ π
2

0

dθ

)(∫ π
4

0

sin(φ) dφ

)(∫ √
18

0

ρ4 dρ

)

=
(π

2

)(
− cos(φ))

∣∣∣π
4

0

)(
ρ5

5

∣∣∣√18

0

)
=

π

2
· (− 1√

2
+ 1) · (18)2 ·

√
18

5

(4) Find the volume of the following regions:
(a) The solid bounded by the surface z = x

√
x2 + y and the planes x = 0,

x = 1, y = 0, y = 1 and z = 0.

Solution. The volume is
∫ 1

0

∫ 1

0
x
√

x2 + ydxdy Let u = x2 + y. Then du =

2xdx, xdx = du
2

and
∫

x
√

x2 + ydx =
∫

u1/2

2
du = u3/2

3
+ C = (x2+y)3/2

3
+ C.

So
∫ 1

0

∫ 1

0
x
√

x2 + ydxdy =
∫ 1

0
(x2+y)3/2

3

∣∣∣1
0
dy

=
∫ 1

0
(1+y)3/2

3
− (y)3/2

3
dx = 2(1+y)5/2

15
− 2(y)5/2

15

∣∣∣1
0

= 2(2)5/2

15
− 2

15
− ( 2

15
− 0)

= 2(2)5/2

15
− 4

15
= 8

√
2

15
− 4

15

(b) The solid that lies between the sphere x2 + y2 + z2 = 4, above the x− y

plane, and below the cone z =
√

x2 + y2.

Solution. %begincenter
The region is bounded above by the hemisphere z =

√
4− x2 − y2 and

below by the cone z =
√

x2 + y2. We have
√

x2 + y2 ≤ z ≤
√

4− x2 − y2.
Thus x2 + y2 ≤ z2 ≤ 4− x2 − y2 and x2 + y2 ≤ 2

In polar coordinates, this region x2+y2 ≤ 2 is R =
{
(r, θ) : 0 ≤ r ≤

√
2, 0 ≤

θ ≤ 2π
}
. Note that

√
4− x2 − y2 =

√
4− r2 and

√
x2 + y2 =

√
r2 = r.

Hence, we can compute the volume of the region by finding the volume
under the graph of

√
4− r2 above the disk R =

{
(r, θ) : 0 ≤ r ≤

√
2, 0 ≤
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θ ≤ 2π
}

and subtracting the volume under the graph of r above R.
Therefore, we have

Volume =

∫ 2π

0

∫ √
2

0

(√
4− r2

)
rdr dθ −

∫ 2π

0

∫ 2

0

(
r
)

rdr dθ

=

∫ 2π

0

∫ √
2

0

r
√

4− r2 − r2 dr dθ =

∫ 2π

0

[
−1

3
(4− r2)3/2 − 1

3
r3
]√2

0
dθ

= 1
3

∫ 2π

0

(
−4
√

2 + 8
)

dθ = 1
3
(−4

√
2 + 8)

∫ 2π

0

dθ

= 1
3
(−8

√
2π + 16π) .

(c) The solid bounded by the plane x + y + z = 3, x = 0, y = 0 and z = 0.

Solution. The region E bounded by the xy, yz, xz planes and the plane
x + y + z = 3 is the set

{
(x, y, z) ∈ R3 : 0 ≤ x ≤ 3, 0 ≤ y ≤ 3 − x, 0 ≤ z ≤

3− x− y
}
. The volume of E is

∫ ∫ ∫
E

dV =

∫ 3)

0

∫ 3−x

0

∫ 3−x−y

0

dz dy dx =

∫ 3)

0

∫ 3−x

0

z
∣∣∣3−x−y

0
dy dx

=

∫ 3

0

∫ 3−x

0

3− x− y dy dx =

∫ 3

0

3y − xy − y2

2

∣∣∣3−x

0
dx (by substitution u=4-x-2y)

=

∫ 3

0

3(3− x)− x(3− x)− (3− x)2

2
dx =

∫ 3

0

9− 3x + 3− 3x + x2 − (x2 − 6x + 9)

2
dx

=

∫ 3

0

9

2
− 3x +

x2

2
dx =

9x

2
− 3x2

2
+

x3

6

∣∣∣3
0

=
27

2
− 27

2
+

27

6
=

9

2
.

(d) The region bounded by the cylinder x2 +y2 = 4 and the plane z = 0 and
y + z = 3.

Solution. The region is bounded above by the plane z = 3−y and below
by z = 0. In polar coordinates, this region x2 + y2 ≤ 4 is R =

{
(r, θ) :

0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π
}
. Note that z = 3 − y = 3 − r cos(θ) Hence, we can
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compute the volume of the region by

Volume =

∫ 2π

0

∫ 2

0

(
3− r cos(θ)

)
rdr dθ

=

∫ 2π

0

∫ 2

0

3r − r2 cos(θ) dr dθ =

∫ 2π

0

[
3
2
r2 − 1

3
r3 cos(θ)

]2
0

dθ

=

∫ 2π

0

[
6− 8

3
cos(θ)

]
dθ = 12π .

(5) Find the area of the following surfaces.
(a) The cone z =

√
x2 + y2 between the planes z = 1 and z = 2

Solution. We have z = f(x, y) =
√

x2 + y2 , fx = x√
x2+y2

, fy = y√
x2+y2

and√
1 + f 2

x + f 2
y =

√
1 + ( x√

x2+y2
)2 + ( y√

x2+y2
)2 =

√
1 + x2

x2+y2 + y2

x2+y2 =
√

2.

Since 1 ≤ z =
√

x2 + y2 ≤ 2, we have 1 ≤ x2 + y2 ≤ 4. The region
E = {(x, y)|1 ≤ x2 + y2 ≤ 4} is {(r, θ)|0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π} in polar
coordinates. Hence the area of surface is∫ ∫

E

√
1 + f 2

x + f 2
y dxdy =

∫ 2π

0

∫ 2

0
rdrdθ =

∫ 2π

0

∫ 2

0

√
2 r2

2
|20drdθ = 2

√
2 · 2π =

4
√

2π.

(b) Given by {(x, y, z)|x2 + y2 = 1, 0 ≤ z ≤ xy, x ≥ 0, y ≥ 0}.

Solution. Note that the curve x2+y2 = 1, x ≥ 0 and y ≥ 0 can be parame-
terized by x = cos(t), y = sin(t) with 0 ≤ t ≤ π

2
. So ds =

√
x′(t)2 + y′(t)2dt =

dt and z = xy = cos(t) sin(t). So the area is
∫ π

2

0
xyds =

∫ π
2

0
cos(t) sin(t)dt =

sin2(t)
2
|

π
2
0 = 1

2
.

(6) Rewrite the integral
∫ 1

−1

∫ 1

x2

∫ 1−y

0
f(x, y, z)dzdydx as an iterated integral in the

order of dxdydz

Solution. The region of integration is E = {(x, y, z)|0 ≤ z ≤ 1 − y, x2 ≤ y ≤
1,−1 ≤ x ≤ 1}. Since x2 ≤ y and −1 ≤ x, we have −1 ≤ x ≤ √

y. Using
z ≤ 1− y, x2 ≤ y and −1 ≤ x ≤ 1, we have 0 ≤ y ≤ 1− z. Using 0 ≤ z ≤ 1− y

and 0 ≤ y, we have 1− y ≤ 1 and 0 ≤ z ≤ 1.
So
∫ 1

−1

∫ 1

x2

∫ 1−y

0
f(x, y, z)dzdydx =

∫ 1

0

∫ 1−z

0

∫ √y

−1
f(x, y, z)dxdydz

(7) Evaluate the following line integrals.
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(a)
∫

C
2zds where C is given by x = cos(t), y = sin(t), z = t, 0 ≤ π.

Solution. Note that dx
dt

= d
dt

(cos(t)) = − sin(t), dy
dt

= d
dt

(sin(t)) = cos(t) and
dz
dt

= d
dt

(t) = 1.
Since x = cos(t), y = sin(t) and z = t,∫

C
2zds =

∫ 2π

0
2t
√

(dx
dt

)2 + (dy
dt

)2 + (dz
dt

)2dt

=
∫ 2π

0
2t
√

(− sin(t))2 + (cos(t))2 + 1dt =
∫ 2π

0
2
√

2tdt = 2
√

2 t2

2
|2π
0 = 2

√
2 · 2π2 =

4
√

2π2.

(b) Evaluate
∫

C
F · dr where F =< y, x > and C is given by r(t) = (t, t2)

where 0 ≤ t ≤ 1.

Solution. Note that r(t) = (t, t2) with 0 ≤ t ≤ 1 is part of the parabola
between (0, 0) and (1, 1). Also r′(t) = (x′(t), y′(t)) = (1, 2t).∫

C
F · dr =

∫ 1

0
(y(t), x(t)) · (x′(t), y′(t))dt =

∫ 1

0
(t2, t) · (1, 2t)dt =

∫ 1

0
3t2dt = t3|10 =

1

(c)
∫

C
ydx + xdy where C is the line between A = (1, 1) and B = (−1, 5).

Solution. The equation of the line between A = (1, 1) and B = (−1, 5) is
r(t) = (x(t), y(t)) = (1− 2t, 1 + 4t) with 0 ≤ t ≤ 1. Also r′(t) = (x′(t), y′(t)) =

(−2, 4).∫
C

ydx + xdy =
∫ 1

0
y(t)x′(t) + x(t)y′(t)dt =

∫ 1

0
(1 + 4t) · (−2) + (1 − 2t) · 4dt =∫ 1

0
−2− 8t + 4− 8tdt =

∫ 1

0
2− 16tdt = 2t− 8t2|10 = −6.

(d)
∫

C
F · dr where F =< x, y, z > and C is given by r(t) = (cos(t), sin(t), t)

where 0 ≤ t ≤ π.

Solution. Note that dx
dt

= d
dt

(cos(t)) = − sin(t), dy
dt

= d
dt

(sin(t)) = cos(t) and
dz
dt

= d
dt

(t) = 1.
Since x = cos(t), y = sin(t) and z = t,∫

C
F · dr =

∫ π

0
(cos(t), sin(t), t) · (− sin(t), cos(t), 1)dt =

∫ π

0
tdt = π2

2

(e)
∫

C
F · dr where F =< x, y, z > and C is the line between A = (1, 1, 1)

andB = (−1, 0, 3).

Solution. The equation of the line between A = (1, 1, 1) andB = (−1, 0, 3)

is r(t) = (x(t), y(t), z(t)) = (1 − 2t, 1 − t, 1 + 2t) with 0 ≤ t ≤ 1. Also
r′(t) = (x′(t), y′(t), z′(t)) = (−2,−1, 2).
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∫
C

F · dr =
∫ 1

0
(1 − 2t, 1 − t, 1 + 2t) · (−2,−1, 2)dt =

∫ 1

0
(−2 + 4t) + (−1 + t) +

(2 + 4t)dt =
∫ 1

0
−1 + 9tdt =

∫ 1

0
2− t + 9t2

2
|10 = 7

2
.

(8) Sketch the gradient vector field of f(x, y) = −xy.

Solution. Note that ∇f =< fx, fy >=< −y,−x >. The vector field looks like
the following.

(9) Sketch the gradient vector field of f(x, y, z) = −x2

2
.

Solution. Note that ∇f =< fx, fy, fz >=< −x, 0, 0 >.

(10) Consider a thin plate that occupies the region D bounded by the parabola
y = 1 − x2, x = 1 and y = 1 in the first quadrant with density function
ρ(x, y) = y.
(a) Find the mass of the thin plate.
(b) Find the center of mass of the thin plate.

Solution. (a) The region of integration is R = {(x, y)|0 ≤ x ≤ 1, 1 − x2 ≤
y ≤ 1}.
The mass is m =

∫ ∫
R

ρ(x, y)dA =
∫ 1

0

∫ 1

1−x2 ydydx =
∫ 1

0

∫ 1

1−x2
y2

2
|11−x2dx =∫ 1

0
(1

2
− (1−x2)2

2
)dx =

∫ 1

0
(1

2
− x4−2x2+1

2
)dx =

∫ 1

0
(−x4

2
+ x2)dx = (−x5

10
+ x3

3
)|10 =

− 1
10

+ 1
3

= 7
30

.

(b) The center of mass = (
R R

R ρ(x,y)xdA

m
,

R R
R ρ(x,y)ydA

m
.
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Now
∫ ∫

R
ρ(x, y)xdA =

∫ 1

0

∫ 1

1−x2 xydydx
∫ 1

0

∫ 1

1−x2 xy2

2
|11−x2dx =

∫ 1

0
x
2
−x (1−x2)2

2
dx =∫ 1

0
x
2
− x · (1−x2)2

2
dx =

∫ 1

0
x
2
− (x5−2x3+x

2
)dx =

∫ 1

0
−x5+2x3

2
dx = (−x6

12
+ 2x4

8
)|10 =

− 1
12

+ 2
8

= 1
6
.∫ ∫

R
ρ(x, y)ydA =

∫ 1

0

∫ 1

1−x2 y · ydydx =
∫ 1

0

∫ 1

1−x2 y2dydx =
∫ 1

0
y3

3

∣∣∣1
1−x2

dx =
∫ 1

0
1
3
−

(1−x2)3

3
dx =

∫ 1

0
1
3
− (−x6+3 x4−3 x2+1)

3
dx == x7

21
− x5

5
+ x3

3
)|10 = ( 1

21
− 1

5
+ 1

3
− 1

3
) = 19

105
.

So the center of mass is (
1
6
7
30

,
19
105
7
30

) = (5
7
, 38

49
).


