Solution to Review Problems for Midterm llI
MATH 2850 - 004

The detail of the information about the second midterm can be found at
http://www.math.utoledo.edu/~mtsui/calcO6sp/exam/midterm3.html

You should also review the homework and quiz problems to prepare for the
midterm.

This midterm will cover 15.8 Lagrange multipliers , Chapter 16 (except
16.9) and 17.1-17.2.

(1) Use Lagrange multipliers to find the maximum or minimum values of f
subject to the given constraint.

(@ f(a,y) = zy, (1+2°)(1+3°) = 4.

Solution. The constraint is g(z,y) = (1+2%)(1+y?) = 4 and the function
is f(z,y) = ry. We have V f(z,y) = (y,z) and Vg(z,y) = (2z(1 +y?), 2y(1 +
y%)). The equation Vf(x,y) = AVg(z,y) is the same as y = 2\z(1 + z?)
and z = 2\y(1 + »?). Thus the optimizer (z,y) satisfy

(1) y = 2\z(1 + 2?)
(2) x =2 y(1 +y?)
(3) (1+2*)(1+y?) =4

Multiplying the first two equations, we have ry = 4\2xy(1 + 22)(1 + y?).
The constraint equation (1 + z?)(1 + y*) = 4 implies zy = 16\*zy. Thus
zy =0or A ==+1. But zy =0, y = 22z(1 + z%) and = = 2\y(1 + y?) imply
(x,y) = (0,0) which doesn’t satisfy the constraint equation. Suppose
A =1, we have y = 1z(1 + 2?) and = = Jy(1 + 2°) = 1z(1 + 2%)%. Thus
z =0or (1+2%?* = 4. Thus (z,y) = (1,1),(-1,—1). Suppose A = —1,
we have y = —1z(1+2?) and = = —Jy(1 + 2?) = 1z(1 + 2?)?. Thus z =0
or (1 + 2%)? = 4. This implies (z,y) = (1,—1),(—1,1). We have f(1,1) =
f(=1,-1) = 1 and f(1,—1) = f(—1,1) = —1. Thus the maximizers are
(1,1) and (—1,—1) with maximum 1. The minimizers are (—1,1) and
(1, —1) with minimum —1. O

b) f(z,y,2) =2® —y* a® +y* =2

Solution. Let f(z,y) = 2> —y* and g,y) = > + y*> = 2. The necessary
conditions for the optimizer (z,y) are

V f(z,y) = A\Vgz,y) and the constraint equations z? + y* = 2 which are:
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(4)
(5)
(6)

(7)
(8)
(9)
(10)

Since Vf(z,y) = (2z,—2y) and Vg(z,y) = (2z,2y), thus (z,y) must sat-
isfy

20 = 2M\x
—2y = 2\y
4y = 2

From (4), (5) , we get 422 + 4y = 4\*(z* + y*). Since
2?2 + 9y?> = 2m we have \> = 1. So A = £1. If lambda = 1, then eq(4)
is always true and we get y = 0 by eq(5). Using z* + y? = 2, we get
r = +2.
If lambda = —1, then eq(d) is always true and we get x = 0 by eq(4).
Using 22 + y? = 2, we get y = +1/2.
So the candidates are (v/2,0), (—v/2,0), (0,4/2,0) and (0,/2,0).

F((VZ,0)) = F((=v/2.0)) = 2 and £((0,VZ,0)) = £((0,v/2,0)) = —
Thus the maximum is 2, the minimum is —2, the maximizers are
(v/2,0), (—/2,0), and the minimizers are (0,+/2,0) and (0, v/2,0).

O

© flz,y,2)=z+y+z 22 +y*+22=1.

Solution. Let f(x,y,2) =x+y+zand g(x,y,2) =22 +y> + 22 = 1.
We have Vf(z,y,z) = (1,1,1) andVyg(z,y, z) = (2z, 2y, 22).
The necessary conditions for the optimizer (z,y, z) are
Vf(z,y,2z) = AVg(x,y, z) and the constraint equations which are:

1 = 2)\z
1 = 2)\y
1 = 2)\z

42 =1
From (7),(8) (9) and (10), we know that AN£0, 2= gw Yy = % and z = QA
Plugging into (10), we get ySvinn W + 4A2 =1, 4A2 =1land \ = i\[ So
(‘r Y,z ) (21)\7 21)\7 21/\) = (L :;Lf 7) (I Y,z ) - ((_%7_%’_%)3
We have (35, 5. ) = 35 = V3 and f((~J5, ~ 5. =) =~ = =V
f

V37 V37 V3
Thus the maximizers are ( ﬁ) with maximum +/3. The minimiz-

1 1
V3 V3

IIS

11
\/g’ 37
h

ers are (— , —J5) with minimum —/3. O
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(2) Using Riemann sums with two subdivisions in each direction, find upper
and lower bounds for the volume under the graph of f(z,y) = 1 + 2% + 3
above the rectangle R with 0 <z <2, 0 <y <2.

Solution. Let f(z,y) = 1+ z*+y*. We have f, =2z > 0 and f, = 2y > 0 in the
rectangle R. The lower estimate is f(0,0) -1+ f(1,0)- 1+ f(0,1)- 14+ f(1,1)-1 =
1+242+3=8.

The upper estimate is f(1,1)-1+ f(1,2)-1+ f(2,1)-1+ f(2,2)- 1 =3+5+
5+ 9 =22. [

(3) Compute the following iterated integrals.
(@) ffD 3+1dAWhereD {(x y)|0<:13<y,0<y<1}

, - 1 1 3.2 Y
Solution. [ [, #dA = [} [ wadady = [§ 35 o = NG Sde Let
= y® + 14. Then du = 3y*dy, y*dy = %du and [ :Z’,fild f3—udu =
Inful +C =Inly*+ 1|+ C. Hence [ [, ?ﬁldA In |y + 1||| = In(2).
0

]

() [ [y 2o dedy
LetD—{(x,y)|\/§§x§1,0§y§1}Then0§y§x2and0§x§1. So
Disthesameas{(x y)|0<x<10<y<x2}

1 2 a2

We have fofl s ddy— I ™ yer dydx = [ L=

x3 0 2a3

1 g
— [y #5dn =

1
4|0 Z

(c) fo f cos(y?)dydx
Solution. Let D = {(z,y)|0 <z <1,z <y <1}. Since x <y and 0 < z,
we have 0 <z <y. Sincer<y<land 0 <z, wehave 0 <y <1. So D
is the same as {(z,y)[0 <z <y,0 <y <1}.

We have fol [ cos(y?)dyda = fol 3 cos(y?)dady = fol z cos(y?)[Edx = fol y cos(y?)dy =

sm(y | _ sin(1)
o— 2 -

]

(@ [°, [V /2?2 + 2dudy

Solution. The region of integration is {(z,y)0 < x < /9 —y?, -3 <y <
0}. The is the region in fourth quadrant. In polar coordinates, it is
R=1{(r0):0<r <37 <0 <0} Wealso have (/22 +32 = (r?)z =7
and
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V9 v VvVt +y? da:dy—f fo r-rdrdd

—fi [Fr2drdg = [7T 2 |gd9—3e\ =
2

© [y [ eV dyda

Solution. The region of integration is {(z,y)0 < z < 2,—V4—22 <y <
0}. The is the region in fourth quadrant. In polar coordinates, it is
R={(r,0):0<r<3,=F <6<0}. We also have 22 + y*> = r? and

2 (0 22 0 2 2
fo I Vi€ y dydx:f%, fo e " -rdrdf

4

-1 —) VRN

@ Y e

x2+ 2 :cyzdzdxdy

Solution. The region of integration is {(z,y,2)0 < z < /1 —420 <y <
1,22 + y* < 2 < \/22 + y*}. In cylindrical coordinates, it is R = {(r,6, 2) :
0<r<10<6<Zr*<z<r}. Recall that z = rcos(d), z = rsin(f) We
have zyz = rcos(&) rsin(f) = r? cos(d) - sin(f) and

Jo Jo g f2+ ) xyzdzdxdy—fo [ [5 72 cos(8) - sin(6)z - rdzdrdd

_ I3 _ 1 32_ L@ r

= 2 fo [ 3z cos(f) - sin(f)dzdrdd = fo r?Z-cos(0) sm(@)‘ﬂdrdﬁ

= fo bt T cos(9)~ sin(0)drd6

= Jy fo o — Y cos(9) - sin(0)drdd = [F (%5 — %) cos(f) - sin(0)

—fo 5 cos(0) - sin(0)do

= L sin (9)’02 =4

1

do
0

96 96 °

() f J® \}%f%fyw 22 + y?) 2 dzdydx
Solution. The region of integration is {(z,y,2)] —1 <z < 1,—V/1 —22 <
y < V1—-22 2% +9y* < 2 < 2—2%—9%}. In cylindrical coordinates, it
is R={(r0,2) :0<r<10<6<2mr*<z<2-—r}. Recall that
r=rcos(f), r = rsin(@) We have (2% + y 22 = 3 and

S P Sy ) by = 7 [ 5 rdzdrds
= OQW 01 riz T; drdf

= [27 [ 42— 2r%)drdd
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1
= Qﬂfol E_QL;) 0d9

= Jif

35

55

) 2, [V I%y VATt 2dzdady

Solution. In spherical coordinates, the region £ = {(z,y,2)[0 < z <
Vad—yt —2<y<2, -4 -2 <2< 4 -2 -2}

is described by the inequalities 0 < p <2, 0 < f <7rand 0 < ¢ < 7.
Note that y = psin(¢) cos(f) Hence, the integral is

\/4 y?2 \/4 x2—
/ / / v/ 12 + Y2 + 22dzdxdy
-2

4— ac2—y

- /0 /0 /0 p* sin®(¢) cos”(0) (p) p*sin(¢) dp dO d
/ﬂ /7r /2 p”sin®(¢) cos*(0) dp df do

(/0 o )(/0 sin® )(/:pf’dp>

(/“ 1 +cos (20) d@) ( (1 — cos?()) sin(¢) d¢) (/02 g dp)
(

sin( 29 0) ( cos(é 0083((;5)) Z)

o=,

9
2"
4
23 6 9

DIRIASE| \/%f‘y (a2 + 12 + 2?)dzdady

Solution. In spherical coordinates, the region £ = {(z,y,2)[0 < z <

VI—120<y <3 a2+y?<z< /18 —1a?—y?}

is described by the inequalities 0 < p < V18, 0< 0 <Zand 0 < ¢ < 7.

Note that /22 + 42 = /18 — 22 —y2 if 22 + y?> = 9 and 2z = /22 + 42 is

¢ = 7 in spherical coordinates.
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Note that z? + 3? + 22 = p* Hence, the integral is

/ / v / \/i:y (e + o + 22)dzdady
2/04/02/0 p’ - p*sin(¢) dp df do
/4/2/mp4sm<¢) dp 0 do

( /0 d) *sin(9) d¢> ( / " dp>
) (—ww D)

+1)- (asy- vis - VI8

s
2

_E

(4) Find the volume of the following regions:
(@) The solid bounded by the surface z = z+/2? + y and the planes = = 0,
r=1,y=0,y=1and z=0.

Solution. The volume is f(]l fol /72 + dxdy Let u = 22 + y. Then du =
2xdx, xdx = and fx, /x? + yde = [ %= /2 3_/2 + O = (x2+§/)3/2 e

1,1 x 3/2
Sof0f0$vx2 ydacdy:fOJrTy)oy
_oplasn¥? @Y g 2042 2|
=Jo 5 - Yde="50— - 24 0 15 15 \15

2252 4 8v2 _ 4
- 15 15 15 15 [

=2 (2 -0)

'S

(b) The solid that lies between the sphere 22 + 3? + 22 = 4, above the z — y
plane, and below the cone z = \/x2 + 2.

Solution. %begincenter

The region is bounded above by the hemisphere z = /4 — 2? — y? and
below by the cone z = /2% + y2. We have /22 +y? < z < /4 — 22 — 2.
Thus 22 + 92 <22 <4 —22 —y?> and 22 +¢y?> < 2

In polar coordinates, this region z?+y* < 2is R = {(r, 6):0<r<+2,0<
0 <2r}. Note that /4 — 22—y =4 —r2and \/22 + 2 = Vi =71,
Hence, we can compute the volume of the region by finding the volume
under the graph of v/4 — 2 above the disk R = {(r, 0):0<r< V2,0 <
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3) p3—zx p3—z—y 3) r3—xz
///dV:/ / / dzdydx:/ / z
E 0 0 0 0 0

0 < 27r} and subtracting the volume under the graph of » above R.
Therefore, we have

2,2 o 2
Volume = / / (\/4 — 7"2) rdr df — / / (r) rdr df
o Jo o Jo

V2

27 vﬁ 27
—/ / r4 —r2 —r?dr d@—/ [—%(4—7’2)3/2—%7"3]0 do
o Jo 0
2T 27
/ (—4\/§+8> d@:%(—4ﬁ+8)/ do
0 0

= 1(=8V2r + 167) . O

W=

L=

(c) The solid bounded by the plane z +y+2 =3, 2 =0, y=0and z = 0.

Solution. The region F bounded by the zy, yz, xz planes and the plane
xr+y+ z = 3is the set {(m,y,z) ER?:0<2<30<y<3—2,0<2<
3 —z —y}. The volume of F is

3—x—y
dy dx
0

23—z

3 p3-z 3 y
// S—x—ydydx:/?)y—xy——
0o Jo 0 210

dx (by substitution u=4-x-2y)

3 2 3 2
3— —6x+9
/3(3—:E)—m(3—x)—( z) dm:/ 9—3x+3—3x+x2—wdx
0 0
/39 5 +x2d Ox 3$2+x33 27 27+27 9
= _ — T _— r = — — —— _ = — — — _—= =,
0 2 2 2 2 6 lo 2 2 6 2

O]

(d) The region bounded by the cylinder 2 +y* = 4 and the plane z = 0 and
y+z=23.

Solution. The region is bounded above by the plane z = 3—y and below
by z = 0. In polar coordinates, this region 22 + y*> < 4is R = {(r,9) :
0<r<20<6<2r}. Notethat z=3—y =3 - rcos(d) Hence, we can
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compute the volume of the region by

2m 2
Volume = / / (3 —rcos(9)) rdr df
o Jo
2m 2 2m 9
= / / 3r —r?cos() dr df = / [3r® — Lr? COS(Q)}O db
o Jo 0

27
= 6 —8cos(h)]di = 12r. O]
[l costo)
0

3

(5) Find the area of the following surfaces.
(@) The cone z = /z? + y? between the planes z =1 and z = 2

. _ _ 2 .2 —
Solution. We have z = f(z,y) = /22 + 4>, fo. = \/m fy = m

2 2 2 —
\/1+fm+fy - \/1 2+2 \/x2+2 \/1+x2+y 2+y2 - \/_

Since 1 < z = \/x2+y2 < 2, we have 1 < 2?2 + y?> < 4. The region
E = {(z,y)1 < 2?2+ y* < 4} is {(r,0)]0 < r < 2,0 <0 < 27} in polar
coordinates. Hence the area of surface is

[ Ju /I P2+ Pdady = [ [Zrdrdd = [I7 [2V22 2drdd = 2v2 21 =
4+/2rr.

O
(b) Given by {(z,y,2)[z* +y*> =1,0 <z < ay,x >0,y > 0}.

Solution. Note that the curve z?+y* = 1, x > 0 and y > 0 can be parame-
terized by = = cos(t), y = sin(t) with 0 < ¢ < 7. So ds = /2/(1)? + y/(1)%dt =
dt and z = zy = cos(t)sin(t). So the area is f0§ ryds = fog cos(t) sin(t)dt =

sm ‘0 — l D

2°

(6) Rewrite the integral f_ll fle fol_y f(x,y, z)dzdydr as an iterated integral in the
order of dxdydz

Solution. The region of integration is £ = {(2,4,2)|0 < 2 < 1—y,2? <y <
1,-1 <z < 1}. Since 2*> < y and —1 < z, we have —1 < z < ,/y. Using
z<l-y,2*?<yand -1 <z <1l,wehave 0 <y<1-2 Using0<z<1-—y
andogy,wehave1—y<1and0<z<1

So f_ll fx2f (x,y, z)dzdydr = fo f‘ff (x,y, z)dzdydz

(7) Evaluate the following line integrals.
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(@) [, 2zds where C' is given by z = cos(t), y = sin(t), z =t, 0 < 7.
?Olution Note that %¢ = <(cos(t)) = —sin(t), ‘;—ZZ = A(sin(t)) = cos(t) and
G =at =1L

Slncex—cos ,y—sm()andZ—t

Jo2zds = Zt\/( + (%)2dt
= [ 2t\/ (—sin(t (cos( )) F1dt = [TT2V2tdt = 228 127 = 22272 =
4272, O]

(b) Evaluate [, F-dr where F =< y,z > and C is given by r(t) = (t,t%)
where 0 <t < 1.

Solution. Note that r(t) = (¢,t*) with 0 < ¢ < 1 is part of the parabola
between (0,0) and (1,1). Also r( ) (x’(t),y’( )) (1,2t).

fCF'dT - fol@(t)?x(t)) (@'(2), fo (#2,1) - (1, 2t)dt = fo tdt = °]g =
1

O

(©) [, ydx + zdy where C is the line between A = (1,1) and B = (—1,5).

Solution. The equation of the line between A = (1,1) and B = (—1,5) is
r(t) = (2(t), y(t)) = (1 — 26,1+ 4) with 0 <t < 1. Also 7'(t) = (2/(£), (1)) =
(=2,4).
fC ydr + xdy = fo t) + z(t)y'(t)dt = fol(l +4t) - (=2) + (1 — 2t) -4dt =

[l —2—8t+4-— Stdt fo 2 — 16tdt = 2t — 8t?|j = —6.
O

(d) [, F-dr where F =< z,y,z > and C is given by r(t) = (cos(t),sin(t), 1)
where 0 < ¢ < 7.
Solution. Note that % = 4(cos(t)) = —sin(t), % = Z(sin(t)) = cos(t) and
ZI; — @ () =1.
Since = = cos(t), y = sin(t) and z = ¢,
[ F-dr = [T(cos(t),sin(t), t) - (—sin(t), cos(t), 1)dt = [ tdt =T

]

(e) [, F-dr where FF =< z,y,z > and C is the line between A = (1,1,1)
andB = (—1,0,3).
Solution. The equation of the line between A = (1,1,1) andB =
is r(t) = (z(t),y(t),2(t)) = (1 —2t,1 —t,1 + 2¢t) with 0 < t <
r'(t) = (2'(), y'(1), #' (1)) = (=2, -1,2).

(—1,0,3)
1. Also
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[oFedr= [}(1—2t,1 —t,14+2t)-(=2,-1,2)dt = [}(~2+4t) + (=1 +1) +
2+ 4t)dt = [} —1+9tdt = [ 2—t+ L =1,
[
(8) Sketch the gradient vector field of f(z,y) = —zy.

Solution. Note that Vf =< f,, f, >=< —y, —z >. The vector field looks like
the following.

Py By R, Py o, T ot et i o o o o
Ry Ry B, B, B, By oo ittt i o o o o
BURR R B, Ry o b ddiiomimar i o o o of of of

o g o o g

2

(9) Sketch the gradient vector field of f(z,y,2) = —%-.
Solution. Note that Vf =< f,, f,, f. >=< —2,0,0 >. [

(10) Consider a thin plate that occupies the region D bounded by the parabola
y=1-—2% 2 =1and y = 1 in the first quadrant with density function

p(z,y) =y.
(@) Find the mass of the thin plate.
(b) Find the center of mass of the thin plate.

Solution. (a) The region of integration is R = {(z,y)[0 <z < 1,1 —2% <

y <1}.

The mass is m = fpr z,y)dA = fol fll L2 ydydr = fol fll 22 %H_zgdx =
z? 24 —2x2 x® z3

fo - b5 27 _fo — =5 dx_fo __+$)d$—(_ﬁ+?)‘(l):

~% 3= %

(b) The center of mass = (fpr ‘”d*‘, fprm yydA
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NOWfpr x,y)rdA = fol fll w2 Tydydx fol fllfxzx ‘ap 1 pede = 01 2 _pis Vdy =
1g 12622 z—x3x 1—:1:5 x z8 o
Jos—= A _fo2_A)dx_o+2d$:(_ﬁ+2T)|é:
1 1
_E_{_g =
11 11
I Jx p(x,y)ydA = Jo iz y-ydyde = [§ [} yPdyde = ‘ 3
(=23 5 11 (—zS+32*-32%+1) ; 11y _ 19
Todr =y 5— 3 d ==H-S+5)= (ﬁ_'+§ g)—m-

1
So the center of mass is (4, 13%5) - (%7 %)_

g‘\llom—t

O



