Problem Set \#1 Due: Wednesday, January 18

1. Consider a molecule with four atoms at the points $(0,0,0),(6,0,0)$, $(3, \sqrt{3}, 2 \sqrt{6})$ and $(3,3 \sqrt{3}, 0)$. Verify that every atom in this molecule is 6 units away from every other atom.
2. Let $P=(1,2,3)$ and $Q=(3,4,2)$.
(a) Find the distance between P and Q.
(b) Find a unit vector from the point P and toward the point Q.
(c) Find a vector of length 9 pointing in the same direction of $\overrightarrow{P Q}$.
(d) Find a point R such that $\overrightarrow{P R}$ is a vector of length 12 pointing in the opposite direction of $\overrightarrow{P Q}$.
3. Let $\vec{u}=<1,1>$ and $\vec{v}=<-2,1>$.

Describe the set of vectors $\{\vec{w}=s \vec{u}+t \vec{v} \mid 0 \leq s \leq 1,0 \leq t \leq 1\}$ geometrically.

