Problem Set \# 10
 Due: Wednesday, Apr. 19

1. Compute the curl and the divergence of the following vector fields. Also determine whether or not the vector is conservative. If it is conservative, find a function f such that $F=\nabla f$.
(a) $F(x, y, z)=<2 x y, x^{2}+2 y z, y^{2}>$.
(b) $F(x, y, z)=\left\langle x^{2} y z, x y^{2} z, x y z^{2}\right\rangle$.
2. Evaluate the following line integrals.
(a) $\int_{C} x d s$ where C is given by $x=\cos (t), y=\sin (t), z=t, 0 \leq t \leq \pi$.
(b) $\int_{C} F \cdot d r$ where $F=<2 x y, x^{2}+2 y z,, y^{2}>$ and C is given by $r(t)=$ ($e^{t} \cos (\pi t), e^{t} \sin (\pi t), e^{t}$) where $0 \leq t \leq 1$. (You can use the result in problem 1.)
