Problem Set #1

1. Consider a molecule with four atoms at the points (0,0,0), (6,0,0), $(3,\sqrt{3},2\sqrt{6})$ and $(3,3\sqrt{3},0)$. Verify that every atom in this molecule is 6 units away from every other atom.

Solution. If A is the point (0,0,0), B is the point (6,0,0), C is the point $(3,\sqrt{3},2\sqrt{6})$ and D is the point $(3,3\sqrt{3},0)$, then we have

$$\|\overrightarrow{AB}\| = \sqrt{(6-0)^2 + (0-0)^2 + (0-0)^2} = \sqrt{36} = 6$$

$$\|\overrightarrow{AC}\| = \sqrt{(3-0)^2 + (\sqrt{3}-0)^2 + (2\sqrt{6}-0)^2} = \sqrt{9+3+24} = \sqrt{36} = 6$$

$$\|\overrightarrow{AD}\| = \sqrt{(3-0)^2 + (3\sqrt{3}-0)^2 + (0-0)^2} = \sqrt{9+27} = \sqrt{36} = 6$$

$$\|\overrightarrow{BC}\| = \sqrt{(3-6)^2 + (\sqrt{3}-0)^2 + (2\sqrt{6}-0)^2} = \sqrt{9+3+24} = \sqrt{36} = 6$$

$$\|\overrightarrow{BD}\| = \sqrt{(3-6)^2 + (3\sqrt{3}-0)^2 + (0-0)^2} = \sqrt{9+27} = \sqrt{36} = 6$$

$$\|\overrightarrow{CD}\| = \sqrt{(3-3)^2 + (3\sqrt{3}-\sqrt{3})^2 + (0-2\sqrt{6})^2} = \sqrt{12+24} = \sqrt{36} = 6$$

which establishes that every atom in this molecule is 6 units away from every other atom. $\hfill \Box$

2 Let P = (1, 2, 3) and Q = (3, 4, 2).

a Find the distance between P and Q.

b Find a unit vector from the point P and toward the point Q.

c Find a vector of length 9 pointing in the same direction of \overrightarrow{PQ} .

d Find a point *R* such that \overrightarrow{PR} is a vector of length 12 pointing in the opposite direction of \overrightarrow{PQ} .

Solution. The displacement vector $\overrightarrow{PQ} = (3,4,2) - (1,2,3) = <2,2,-1>$. The distance between P and $Q = ||\overrightarrow{PQ}|| = \sqrt{2^2 + 2^2 + (-1)^2} = \sqrt{9} = 3$.

The unit vector from the point *P* and toward the point *Q* = $\frac{\overrightarrow{PQ}}{||\overrightarrow{PQ}||} = \frac{1}{3}(2,2,-1) = (\frac{2}{3},\frac{2}{3},-\frac{1}{3}).$ The vector of length 9 pointing in the same direction of \overrightarrow{F}

The vector of length 9 pointing in the same direction of \overrightarrow{PQ} = $9\frac{\overrightarrow{PQ}}{||\overrightarrow{PQ}||} = 9(\frac{2}{3}, \frac{2}{3}, -\frac{1}{3}) = (6, 6, -3).$

Let R = (p, q, r) Then $\overrightarrow{PR} = (p, q, r) - (1, 2, 3) = (p - 1, q - 2, r - 3)$. We need to solve $\overrightarrow{PR} = -12 \frac{\overrightarrow{PQ}}{||\overrightarrow{PQ}||}$. By (c), we have $-12 \frac{\overrightarrow{PQ}}{||\overrightarrow{PQ}||} = -12(\frac{2}{3}, \frac{2}{3}, -\frac{1}{3}) = (-8, -8, 4)$ Thus we have to solve (p - 1, q - 2, r - 3) = (-8, -8, 4). So p = -7, q = -6 and r = 7. Hence R = (-7, -6, 7).

MATH 2850: page 1 of 2

3 Let $\vec{u} = <1, 1 >$ and $\vec{v} = <-2, 1 >$.

Describe the set of vectors $\{\vec{w} = s\vec{u} + t\vec{v} | 0 \le s \le 1, 0 \le t \le 1\}$ geometrically.

Solution. \vec{w} is the set of vectors that start at origin and end at the parallelogram that spanned by the vectors $\vec{u} = <1, 1 >$ and $\vec{v} = <-2, 1 >$.

