Problem Set \# 1

1. Consider a molecule with four atoms at the points $(0,0,0),(6,0,0),(3, \sqrt{3}, 2 \sqrt{6})$ and $(3,3 \sqrt{3}, 0)$. Verify that every atom in this molecule is 6 units away from every other atom.
Solution. If A is the point $(0,0,0), B$ is the point $(6,0,0), C$ is the point $(3, \sqrt{3}, 2 \sqrt{6})$ and D is the point $(3,3 \sqrt{3}, 0)$, then we have

$$
\begin{aligned}
& \|\overrightarrow{A B}\|=\sqrt{(6-0)^{2}+(0-0)^{2}+(0-0)^{2}}=\sqrt{36}=6 \\
& \|\overrightarrow{A C}\|=\sqrt{(3-0)^{2}+(\sqrt{3}-0)^{2}+(2 \sqrt{6}-0)^{2}}=\sqrt{9+3+24}=\sqrt{36}=6 \\
& \|\overrightarrow{A D}\|=\sqrt{(3-0)^{2}+(3 \sqrt{3}-0)^{2}+(0-0)^{2}}=\sqrt{9+27}=\sqrt{36}=6 \\
& \|\overrightarrow{B C}\|=\sqrt{(3-6)^{2}+(\sqrt{3}-0)^{2}+(2 \sqrt{6}-0)^{2}}=\sqrt{9+3+24}=\sqrt{36}=6 \\
& \|\overrightarrow{B D}\|=\sqrt{(3-6)^{2}+(3 \sqrt{3}-0)^{2}+(0-0)^{2}}=\sqrt{9+27}=\sqrt{36}=6 \\
& \|\overrightarrow{C D}\|=\sqrt{(3-3)^{2}+(3 \sqrt{3}-\sqrt{3})^{2}+(0-2 \sqrt{6})^{2}}=\sqrt{12+24}=\sqrt{36}=6
\end{aligned}
$$

which establishes that every atom in this molecule is 6 units away from every other atom.

2 Let $P=(1,2,3)$ and $Q=(3,4,2)$.
a Find the distance between P and Q.
b Find a unit vector from the point P and toward the point Q.
c Find a vector of length 9 pointing in the same direction of $\overrightarrow{P Q}$.
d Find a point R such that $\overrightarrow{P R}$ is a vector of length 12 pointing in the opposite direction of $\overrightarrow{P Q}$.
Solution. The displacement vector $\overrightarrow{P Q}=(3,4,2)-(1,2,3)=<2,2,-1>$. The distance between P and $Q=\|\overrightarrow{P Q}\|=\sqrt{2^{2}+2^{2}+(-1)^{2}}=\sqrt{9}=3$.

The unit vector from the point P and toward the point Q
$=\frac{\overrightarrow{P Q}}{\|\overrightarrow{P Q}\|}=\frac{1}{3}(2,2,-1)=\left(\frac{2}{3}, \frac{2}{3},-\frac{1}{3}\right)$.
The vector of length 9 pointing in the same direction of $\overrightarrow{P Q}$ $=9 \frac{\overrightarrow{P Q}}{\|\overrightarrow{P Q}\|}=9\left(\frac{2}{3}, \frac{2}{3},-\frac{1}{3}\right)=(6,6,-3)$.
Let $R=(p, q, r)$ Then $\overrightarrow{P R}=(p, q, r)-(1,2,3)=(p-1, q-2, r-3)$. We need to solve $\overrightarrow{P R}=-12 \frac{\overrightarrow{P Q}}{\|\overrightarrow{P Q}\|}$. By (c), we have $-12 \frac{\overrightarrow{P Q}}{\|\overrightarrow{P Q}\|}=-12\left(\frac{2}{3}, \frac{2}{3},-\frac{1}{3}\right)=(-8,-8,4)$ Thus we have to solve $(p-1, q-2, r-3)=(-8,-8,4)$. So $p=-7, q=-6$ and $r=7$. Hence $R=(-7,-6,7)$.

3 Let $\vec{u}=<1,1>$ and $\vec{v}=<-2,1>$.
Describe the set of vectors $\{\vec{w}=s \vec{u}+t \vec{v} \mid 0 \leq s \leq 1,0 \leq t \leq 1\}$ geometrically.
Solution. \vec{w} is the set of vectors that start at origin and end at the parallelogram that spanned by the vectors $\vec{u}=<1,1>$ and $\vec{v}=\langle-2,1\rangle$.

