Problem Set #2
Due: Wednesday, January 25

1. Using vectors, prove that the diagonals of a parallelogram are perpendicular if and only if the parallelogram is a rhombus. (Note: A rhombus is a parallelogram whose four sides all have the same length.)

2. Suppose \vec{u} and \vec{v} are nonzero vectors. Show that $||\vec{v}||\vec{u} + ||\vec{u}||\vec{v}$ bisects the angle between \vec{u} and \vec{v}. (Hint: Find the angle between \vec{u} and $||\vec{v}||\vec{u} + ||\vec{u}||\vec{v}$ and the angle between \vec{v} and $||\vec{v}||\vec{u} + ||\vec{u}||\vec{v}$.)

3. Let $\vec{u} = 2j$ and let \vec{v} be a vector with length 9 that starts at the origin and rotates in the xy-plane. Find the maximum and minimum values of $\vec{u} \times \vec{v}$.

4. (a) Suppose that the area of the parallelogram spanned by the vectors \vec{u} and \vec{v} are 10. What is the area of the parallelogram spanned by the vectors $2\vec{u} + 3\vec{v}$ and $-3\vec{u} + 4\vec{v}$?

(b) Given $(\vec{u} \times \vec{v}) \cdot \vec{w} = 10$. What is $((\vec{u} + \vec{v}) \times (\vec{v} + \vec{w})) \cdot (\vec{w} + \vec{u})$?

5. Online homework 13.3 and 13.4. (Due time: Tuesday, Jan 24, 2006 12:00 AM).