Problem Set \#2

Due: Wednesday, January 25

1. Using vectors, prove that the diagonals of a parallelogram are perpendicular if and only if the parallelogram is a rhombus.(Note: A rhombus is a parallelogram whose four sides all have the same length.)
2. Suppose \vec{u} and \vec{v} are nonzero vectors. Show that $\|\vec{v}\| \vec{u}+\|\vec{u}\| \vec{v}$ bisects the angle between \vec{u} and \vec{v}. (Hint:Find the angle between \vec{u} and $\|\vec{v}\| \vec{u}+$ $\|\vec{u}\| \vec{v}$ and the angle between \vec{v} and $\|\vec{v}\| \vec{u}+\|\vec{u}\| \vec{v}$.)
3. Let $\vec{u}=2 j$ and let \vec{v} be a vector with length 9 that starts at the origin and rotates in the $x y$-plane. Find the maximum and minimum values of $\vec{u} \times \vec{v}$.
4. (a) Suppose that the area of the parallelogram spanned by the vectors \vec{u} and \vec{v} are 10 . What is the area of the parallelogram spanned by the vectors $2 \vec{u}+3 \vec{v}$ and $-3 \vec{u}+4 \vec{v}$?
(b) Given $(\vec{u} \times \vec{v}) \cdot \vec{w}=10$. What is $((\vec{u}+\vec{v}) \times(\vec{v}+\vec{w})) \cdot(\vec{w}+\vec{u})$?
5. Online homework 13.3 and 13.4. (Due time: Tuesday, Jan 24, 2006 12:00 AM).
