Solution to Problem Set #2

1. Using vectors, prove that the diagonals of a parallelogram are penpendicular if and only if the parallelogram is a rhombus.(Note: A **rhombus** is a parallelogram whose four sides all have the same length.)

Solution. Let \overrightarrow{a} and \overrightarrow{b} be vectors along two sides of the parallelogram. The diagonal vectors of the rhombus can be expressed as $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$. Since $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$, we have $(\overrightarrow{a} + \overrightarrow{b}) \cdot (\overrightarrow{a} - \overrightarrow{b}) = \overrightarrow{a} \cdot \overrightarrow{a} - \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{a} - \overrightarrow{b} \cdot \overrightarrow{b} = \overrightarrow{a} \cdot \overrightarrow{a} - \overrightarrow{b} \cdot \overrightarrow{b} = |\overrightarrow{a}|^2 - |\overrightarrow{b}|^2$. Thus $(\overrightarrow{a} + \overrightarrow{b}) \cdot (\overrightarrow{a} - \overrightarrow{b}) = 0$ if and only if $|\overrightarrow{a}| = |\overrightarrow{b}|$. Therefore $\overrightarrow{a} + \overrightarrow{b}$ is perpendicular to $\overrightarrow{a} - \overrightarrow{b} \cdot \overrightarrow{b}$ and only if $|\overrightarrow{a}| = |\overrightarrow{b}|$.

is perpendicular to $\vec{a} - \vec{b}$ if and only if all fours sides of the parallelogram are the same length, i.e. the diagonals of a parallelogram are penpendicular if and only if the parallelogram is a rhombus

2. Suppose \vec{u} and \vec{v} are nonzero vectors. Show that $||\vec{v}||\vec{u} + ||\vec{u}||\vec{v}$ bisects the angle between \vec{u} and \vec{v} .

Solution. Let $\vec{w} = ||\vec{v}||\vec{u} + ||\vec{u}||\vec{v}$. Let θ_1 be the angle between the vector \vec{u} and \vec{w} . Let θ_2 be the angle between the vector \vec{v} and \vec{w} . By the property of the dot product, we have $\cos(\theta_1) = \frac{\vec{u}\cdot\vec{w}}{||\vec{u}|| \, ||\vec{w}||}$ and $\cos(\theta_2) = \frac{\vec{v}\cdot\vec{w}}{||\vec{v}|| \, ||\vec{w}||}$. Note that $\vec{u} \cdot \vec{w} = \vec{u} \cdot (||\vec{v}||\vec{u} + ||\vec{u}||\vec{v}) = ||\vec{v}||\vec{u} \cdot \vec{u} + ||\vec{u}||\vec{u} \cdot \vec{v} = ||\vec{v}|| \, ||\vec{u}||^2 + ||\vec{u}||\vec{u} \cdot \vec{v}$ and $\vec{v} \cdot \vec{w} = \vec{v} \cdot (||\vec{v}||\vec{u} + ||\vec{u}||\vec{v}) = ||\vec{v}||\vec{v} \cdot \vec{u} + ||\vec{u}||\vec{v} \cdot \vec{v} = ||\vec{v}|| \, \vec{v} \cdot \vec{u} + ||\vec{u}|| \, ||\vec{v}||^2$. Thus $\cos(\theta_1) = \frac{||\vec{v}|| \cdot ||\vec{u}||\vec{u}||}{||\vec{u}|| \, ||\vec{w}||} = \frac{||\vec{v}|| \, ||\vec{u}|| + \vec{u}\vec{v}}{||\vec{w}||}$ and $\cos(\theta_2) = \frac{||\vec{v}|| \, \vec{v} \cdot \vec{u} + ||\vec{u}|| \, ||\vec{v}||}{||\vec{v}|| \cdot ||\vec{u}||} = \frac{\vec{v} \cdot \vec{u} + ||\vec{u}|| \, ||\vec{v}||}{||\vec{w}||}$. Since $\vec{v} \cdot \vec{u} = \vec{u} \cdot \vec{v}$ and $||\vec{v}|| \, ||\vec{u}|| = ||\vec{u}|| \, ||\vec{v}||$, we have $\cos(\theta_1) = \cos(\theta_2)$. This implies that the angle between \vec{u} and $\vec{w} = ||\vec{v}||\vec{u} + ||\vec{u}||\vec{v}|$ is the same as the angle between \vec{v} and $\vec{w} = ||\vec{v}||\vec{u} + ||\vec{u}||\vec{v}|$. Thus $||\vec{v}||\vec{u} + ||\vec{u}||\vec{v}|$ bisects the angle between \vec{u} and \vec{v} .

3. Let $\overrightarrow{u} = 2j$ and let \overrightarrow{v} be a vector with length 9 that starts at the origin and rotates in the *xy*-plane. Find the maximum and minimum values of $\overrightarrow{u} \cdot \overrightarrow{v}$.

Proof. Recall that $\overrightarrow{u} \cdot \overrightarrow{v} = |\overrightarrow{u}| |\overrightarrow{v}| \cos(\theta)$. From $\overrightarrow{u} = 2j$, we get $|\overrightarrow{u}| = | < 0, 2, 0 > | = 2$. Since \overrightarrow{u} and \overrightarrow{v} lies on the same plane, the angle between them is between 0 and π . Thus $-1 \le \cos(\theta) \le 1$. Using $|\overrightarrow{u}| = 2$ and $|\overrightarrow{v}| = 9$, we have $-18 \le \overrightarrow{u} \cdot \overrightarrow{v} = |\overrightarrow{u}| |\overrightarrow{v}| \cos(\theta) =$

Calculus IIIA: page 1 of 2

 \square

 $18\cos(\theta) \le 18$. The maximum of $\overrightarrow{u} \cdot \overrightarrow{v}$ is 18 and the minimum of $\overrightarrow{u} \cdot \overrightarrow{v}$ is -18.

- 4. (a) Suppose that the area of the parallelogram spanned by the vectors \vec{u} and \vec{v} are 10. What is the area of the parallelogram spanned by the vectors $2\vec{u} + 3\vec{v}$ and $-3\vec{u} + 4\vec{v}$?
 - **(b)** Given $(\vec{u} \times \vec{v}) \cdot \vec{w} = 10$. What is $((\vec{u} + \vec{v}) \times (\vec{v} + \vec{w})) \cdot (\vec{w} + \vec{u})$?

Solution. The area of the parallelogram spanned by the vectors \vec{u} and \vec{v} is $||\vec{u} \times \vec{v}| = 10$. We know that the area of the parallelogram spanned by the vectors $2\vec{u}+3\vec{v}$ and $-3\vec{u}+4\vec{v}$ is $||(2\vec{u}+3\vec{v}) \times (-3\vec{u}+4\vec{v})||$. Note that $(2\vec{u}+3\vec{v}) \times (-3\vec{u}+4\vec{v}) = 2\vec{u} \times (-3\vec{u}+4\vec{v}) + 3\vec{v} \times (-3\vec{u}+4\vec{v}) = -6\vec{u} \times \vec{u} + 8\vec{u} \times \vec{v} - 9\vec{v} \times \vec{u} + 12\vec{v} \times \vec{v} = 8\vec{u} \times \vec{v} + 9\vec{u} \times \vec{v} = 17\vec{u} \times \vec{v}$. We have used the fact that $\vec{u} \times \vec{u} = \vec{v} \times \vec{v} = \vec{0}$ and $\vec{v} \times \vec{u} = -\vec{u} \times \vec{v}$. Hence $||(2\vec{u}+3\vec{v}) \times (-3\vec{u}+4\vec{v})|| = ||17\vec{u} \times \vec{v}|| = 17||\vec{u} \times \vec{v}| = 170$. Therefore the

area of the parallelogram spanned by the vectors $2\vec{u} + 3\vec{v}$ and $-3\vec{u} + 4\vec{v}$ is 170. By distributive law, we have

By distributive law, we have

$$\left((\vec{u} + \vec{v}) \times (\vec{v} + \vec{w}) \right) \cdot (\vec{w} + \vec{u}) = \left((\vec{u} \times (\vec{v} + \vec{w})) \cdot (\vec{w} + \vec{u}) + \left((\vec{v} \times (\vec{v} + \vec{w})) \cdot (\vec{w} + \vec{u}) \right) = \left(\vec{u} \times \vec{v} \right) \cdot (\vec{w} + \vec{u}) + \left(\vec{u} \times \vec{w} \right) \cdot (\vec{w} + \vec{u}) + \left((\vec{v} \times \vec{w}) \cdot (\vec{w} + \vec{u}) \right) = \left(\vec{u} \times \vec{v} \right) \cdot \vec{w} + \left(\vec{u} \times \vec{v} \right) \cdot \vec{w} + \left(\vec{u} \times \vec{w} \right) \cdot \vec{w} + \left((\vec{v} \times \vec{w}) \cdot \vec{w} + \left((\vec{v} \times \vec{w}) \cdot \vec{w} \right) \cdot \vec{u} \right) + \left((\vec{v} \times \vec{w}) \cdot \vec{w} + \left((\vec{v} \times \vec{w}) \cdot \vec{w} \right) \cdot \vec{w} + \left((\vec{v} \times \vec{w}) \cdot \vec{w} \right) \cdot \vec{w} + \left((\vec{v} \times \vec{w}) \cdot \vec{w} \right) \cdot \vec{w}$$
where we have used the fact that $\vec{v} \times \vec{v} = \vec{0}$. Furthermore, we have
 $\left(\vec{u} \times \vec{v} \right) \cdot \vec{u} = \left(\vec{u} \times \vec{w} \right) \cdot \vec{w} = \left(\vec{u} \times \vec{w} \right) \cdot \vec{u} = 0$ and $\left((\vec{v} \times \vec{w}) \cdot \vec{u} = \left(\vec{u} \times \vec{v} \right) \cdot \vec{w} \right) \cdot \vec{w}$.
The expression $\left(\vec{u} \times \vec{v} \right) \cdot \vec{w} + \left(\vec{u} \times \vec{v} \right) \cdot \vec{u} + \left(\vec{u} \times \vec{w} \right) \cdot \vec{w} + \left((\vec{v} \times \vec{w}) \right) \cdot \vec{u} + \left((\vec{v} \times \vec{w}) \cdot \vec{w} \right) \cdot \vec{w}$.
Therefore $\left((\vec{u} + \vec{v}) \times (\vec{v} + \vec{w}) \right) \cdot (\vec{w} + \vec{u}) = 2 \left(\vec{u} \times \vec{v} \right) \cdot \vec{w} = 2 \cdot 10 = 20$.