Solution to Problem Set \#2

1. Using vectors, prove that the diagonals of a parallelogram are penpendicular if and only if the parallelogram is a rhombus.(Note: A rhombus is a parallelogram whose four sides all have the same length.)

Solution. Let \vec{a} and \vec{b} be vectors along two sides of the parallelogram. The diagonal vectors of the rhombus can be expressed as $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$. Since $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$, we have

$$
(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=\vec{a} \cdot \vec{a}-\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{a}-\vec{b} \cdot \vec{b}=\vec{a} \cdot \vec{a}-\vec{b} \cdot \vec{b}=|\vec{a}|^{2}-|\vec{b}|^{2} .
$$

Thus $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=0$ if and only if $|\vec{a}|=|\vec{b}|$. Therefore $\vec{a}+\vec{b}$ is perpendicular to $\vec{a}-\vec{b}$ if and only if all fours sides of the parallelogram are the same length, i.e. the diagonals of a parallelogram are penpendicular if and only if the parallelogram is a rhombus
2. Suppose \vec{u} and \vec{v} are nonzero vectors. Show that $\|\vec{v}\| \vec{u}+\|\vec{u}\| \vec{v}$ bisects the angle between \vec{u} and \vec{v}.

Solution. Let $\vec{w}=\|\vec{v}\| \vec{u}+\|\vec{u}\| \mid \vec{v}$.
Let θ_{1} be the angle between the vector \vec{u} and \vec{w}.
Let θ_{2} be the angle between the vector \vec{v} and \vec{w}.
By the property of the dot product, we have
$\cos \left(\theta_{1}\right)=\frac{\vec{u} \cdot \vec{w}}{\|\vec{u}\|\|\vec{w}\|}$ and $\cos \left(\theta_{2}\right)=\frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\|\|\vec{w}\|}$.
Note that
$\vec{u} \cdot \vec{w}=\vec{u} \cdot(\|\vec{v}\| \vec{u}+\|\vec{u}\| \vec{v})=\|\vec{v}\| \vec{u} \cdot \vec{u}+\|\vec{u}\| \vec{u} \cdot \vec{v}=\|\vec{v}\|\|\vec{u}\|^{2}+\|\vec{u}\| \vec{u} \cdot \vec{v}$
and $\vec{v} \cdot \vec{w}=\vec{v} \cdot(\|\vec{v}\| \vec{u}+\|\vec{u}\| \mid \vec{v})=\|\vec{v}\| \vec{v} \cdot \vec{u}+\|\vec{u}\| \vec{v} \cdot \vec{v}=\|\vec{v}\| \vec{v} \cdot \vec{u}+\|\vec{u}\|\|\vec{v}\|^{2}$.
Thus $\cos \left(\theta_{1}\right)=\frac{\|\vec{v}\| \cdot\|\vec{u}\|^{2}+\|\vec{u}\| \vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{w}\|}=\frac{\|\vec{v}\|\| \| \vec{u} \|+\vec{u} \cdot \vec{v}}{\|\vec{w}\|}$ and
$\cos \left(\theta_{2}\right)=\frac{\|\vec{v}\| \cdot \vec{v} \cdot \vec{u}+\|\vec{u}\|\|\vec{v}\|^{2}}{\|\vec{v}\| \cdot\|\vec{w}\|}=\frac{\vec{v} \cdot \vec{u}+\|\vec{u}\|\|\vec{v}\|}{\|\vec{v}\|}$.
Since $\vec{v} \cdot \vec{u}=\vec{u} \cdot \vec{v}$ and $\|\vec{v}\|\|\vec{u}\|=\|\vec{u}\|\|\vec{v}\|$, we have $\cos \left(\theta_{1}\right)=\cos \left(\theta_{2}\right)$. This implies that the angle between \vec{u} and $\vec{w}=\|\vec{v}\| \vec{u}+\|\vec{u}\| \vec{v}$ is the same as the angle between \vec{v} and $\vec{w}=\|\vec{v}\| \vec{u}+\|\vec{u}\| \vec{v}$. Thus $\|\vec{v}\| \vec{u}+\|\vec{u}\| \vec{v}$ bisects the angle between \vec{u} and \vec{v}.
3. Let $\vec{u}=2 j$ and let \vec{v} be a vector with length 9 that starts at the origin and rotates in the $x y$-plane. Find the maximum and minimum values of $\vec{u} \cdot \vec{v}$.

Proof. Recall that $\vec{u} \cdot \vec{v}=|\vec{u}||\vec{v}| \cos (\theta)$. From $\vec{u}=2 j$, we get $|\vec{u}|=|<0,2,0>|=2$. Since \vec{u} and \vec{v} lies on the same plane, the angle between them is between 0 and π. Thus $-1 \leq \cos (\theta) \leq 1$. Using $|\vec{u}|=2$ and $|\vec{v}|=9$, we have $-18 \leq \vec{u} \cdot \vec{v}=|\vec{u}||\vec{v}| \cos (\theta)=$
$18 \cos (\theta) \leq 18$. The maximum of $\vec{u} \cdot \vec{v}$ is 18 and the minimum of $\vec{u} \cdot \vec{v}$ is -18 .
4. (a) Suppose that the area of the parallelogram spanned by the vectors \vec{u} and \vec{v} are 10 . What is the area of the parallelogram spanned by the vectors $2 \vec{u}+3 \vec{v}$ and $-3 \vec{u}+4 \vec{v}$?
(b) Given $(\vec{u} \times \vec{v}) \cdot \vec{w}=10$. What is $((\vec{u}+\vec{v}) \times(\vec{v}+\vec{w})) \cdot(\vec{w}+\vec{u})$?

Solution. The area of the parallelogram spanned by the vectors \vec{u} and \vec{v} is $||\vec{u} \times \vec{v}|=10$. We know that the area of the parallelogram spanned by the vectors $2 \vec{u}+3 \vec{v}$ and $-3 \vec{u}+4 \vec{v}$ is $\|(2 \vec{u}+3 \vec{v}) \times(-3 \vec{u}+4 \vec{v})\|$. Note that $(2 \vec{u}+3 \vec{v}) \times(-3 \vec{u}+4 \vec{v})=2 \vec{u} \times(-3 \vec{u}+4 \vec{v})+3 \vec{v} \times(-3 \vec{u}+4 \vec{v})$
$=-6 \vec{u} \times \vec{u}+8 \vec{u} \times \vec{v}-9 \vec{v} \times \vec{u}+12 \vec{v} \times \vec{v}=8 \vec{u} \times \vec{v}+9 \vec{u} \times \vec{v}=17 \vec{u} \times \vec{v}$.
We have used the fact that $\vec{u} \times \vec{u}=\vec{v} \times \vec{v}=\overrightarrow{0}$ and $\vec{v} \times \vec{u}=-\vec{u} \times \vec{v}$.
Hence $\|(2 \vec{u}+3 \vec{v}) \times(-3 \vec{u}+4 \vec{v})\|=\|17 \vec{u} \times \vec{v}\|=17| | \vec{u} \times \vec{v} \mid=170$. Therefore the area of the parallelogram spanned by the vectors $2 \vec{u}+3 \vec{v}$ and $-3 \vec{u}+4 \vec{v}$ is 170 .

By distributive law, we have
$((\vec{u}+\vec{v}) \times(\vec{v}+\vec{w})) \cdot(\vec{w}+\vec{u})=((\vec{u} \times(\vec{v}+\vec{w})) \cdot(\vec{w}+\vec{u})+((\vec{v} \times(\vec{v}+\vec{w})) \cdot(\vec{w}+\vec{u})=$ $(\vec{u} \times \vec{v}) \cdot(\vec{w}+\vec{u})+(\vec{u} \times \vec{w}) \cdot(\vec{w}+\vec{u})+((\vec{v} \times \vec{v}) \cdot(\vec{w}+\vec{u})+((\vec{v} \times \vec{w}) \cdot(\vec{w}+\vec{u})=$ $(\vec{u} \times \vec{v}) \cdot \vec{w}+(\vec{u} \times \vec{v}) \cdot \vec{u}+(\vec{u} \times \vec{w}) \cdot \vec{w}+(\vec{u} \times \vec{w}) \cdot \vec{u}+((\vec{v} \times \vec{w}) \cdot \vec{w}+((\vec{v} \times \vec{w}) \cdot \vec{u}$ where we have used the fact that $\vec{v} \times \vec{v}=\overrightarrow{0}$. Furthermore, we have $(\vec{u} \times \vec{v}) \cdot \vec{u}=(\vec{u} \times \vec{w}) \cdot \vec{w}=(\vec{u} \times \vec{w}) \cdot \vec{u}=0$ and $((\vec{v} \times \vec{w}) \cdot \vec{u}=(\vec{u} \times \vec{v}) \cdot \vec{w}$. The expression $(\vec{u} \times \vec{v}) \cdot \vec{w}+(\vec{u} \times \vec{v}) \cdot \vec{u}+(\vec{u} \times \vec{w}) \cdot \vec{w}+(\vec{u} \times \vec{w}) \cdot \vec{u}+$ $((\vec{v} \times \vec{w}) \cdot \vec{w}+((\vec{v} \times \vec{w}) \cdot \vec{u}$ can be simplified as $2(\vec{u} \times \vec{v}) \cdot \vec{w}$.
Therefore $((\vec{u}+\vec{v}) \times(\vec{v}+\vec{w})) \cdot(\vec{w}+\vec{u})=2(\vec{u} \times \vec{v}) \cdot \vec{w}=2 \cdot 10=20$.

