Problem Set \#3

Due: Wednesday, Feb. 8

1. (a) Change each of the following points from rectangular coordinates to cylindrical coordinates and spherical coordinates: $(2,1,-2)$, $(\sqrt{2}, 1,1),(-2 \sqrt{3},-2,3)$.
(b) Convert the equation $r^{2} \cos 2 \theta=z^{2}$ (in cylindrical coordinates) into rectangular coordinates. (Hint: Use the formula $\cos (2 \theta)=\cos ^{2}(\theta)-$ $\sin ^{2}(\theta)$.)
(c) Convert the equation $\rho \sin \phi=1$ into rectangular coordinates.
2. Find a vector function that represents the curve of intersection of the cylinder $x^{2}+y^{2}=4$ and the surface $z=x y$.
3. Find a vector function that represents the curve of intersection of the cone $z=\sqrt{x^{2}+y^{2}}$ and the plane $z=y+1$.
