Problem Set #3 Due: Wednesday, Feb. 8

- 1. (a) Change each of the following points from rectangular coordinates to cylindrical coordinates and spherical coordinates: (2, 1, -2), $(\sqrt{2}, 1, 1)$, $(-2\sqrt{3}, -2, 3)$.
 - (b) Convert the equation $r^2 \cos 2\theta = z^2$ (in cylindrical coordinates) into rectangular coordinates. (Hint: Use the formula $\cos(2\theta) = \cos^2(\theta) \sin^2(\theta)$.)
 - (c) Convert the equation $\rho \sin \phi = 1$ into rectangular coordinates.
- **2.** Find a vector function that represents the curve of intersection of the cylinder $x^2 + y^2 = 4$ and the surface z = xy.
- **3.** Find a vector function that represents the curve of intersection of the cone $z = \sqrt{x^2 + y^2}$ and the plane z = y + 1.