Solution to Problem Set \#4

1. (a) (15 pts) Find parametric equations for the tangent line to the curve $r(t)=\left\langle t^{3}, 5 t, t^{4}\right\rangle$ at the point $(-1,-5,1)$.
(b) (15 pts) At what point on the curve $r(t)=\left\langle t^{3}, 5 t, t^{4}\right\rangle$ is the normal plane (this is the plane that is perpendicular to the tangent line) parallel to the plane $12 x+5 y+16 z=3$?

Solution. (a) Solving $5 t=-1$ (or $t^{3}=-5$), we get $t=-1$. So we have $r(-1)=(-1,-5,1)$. Taking the derivative of $r(t)$, we get $r^{\prime}(t)=$ $\left\langle 3 t^{2}, 5,4 t^{3}\right\rangle$. Thus the tangent vector at $t=-1$ is $r^{\prime}(-1)=\langle 3,5,-4\rangle$. Therefore parametric equations for the tangent line is $x=-1+3 t$, $y=-5+5 t$ and $z=1-4 t$.
(b) The tangent vector at any time t is $r^{\prime}(t)=\left\langle 3 t^{2}, 5,4 t^{3}\right\rangle$. The normal vector of the normal plane is parallel to $r^{\prime}(t)=\left\langle 3 t^{2}, 5,4 t^{3}\right\rangle$. The normal vector of $12 x+5 y+16 z=3$ is $\langle 12,5,16\rangle$. So $\frac{12}{3 t^{2}}=\frac{5}{5}=\frac{16}{4 t^{3}}$. This implies that $3 t^{2}=12$ and $4 t^{3}=16$. So $t= \pm 2$ and $t= \pm \sqrt[3]{2}$. Thus we don't have a solution for this problem.
(Remark: The normal plane of this problem should have been $12 x+5 y+32 z=3$. Then we have $\frac{12}{3 t^{2}}=\frac{5}{5}=\frac{32}{4 t^{3}}$. So $3 t^{2}=12$ and $4 t^{3}=32$. So $t= \pm 2$ and $t=2$. Hence $t=2$ is a solution of $\frac{12}{3 t^{2}}=\frac{5}{5}=\frac{32}{4 t^{3}}$.
The points that we want to find is $r(2)=\langle 8,10,16\rangle$ and $r(-2)=$ $\langle-8,-10,16\rangle$.)
2. ($25 \mathrm{pts}, 10$ for unit normal, 10 for unit tangent, 5 for curvature) Find the unit tangent T, unit normal N and unit binormal vectors B for the curve $r(t)=\langle\cos (2 t), 2 t, \sin (2 t)\rangle$. Then calculate the curvature.

Solution. Given $r(t)=\langle\cos (2 t), 2 t, \sin (2 t)\rangle$, we have $r^{\prime}(t)=\langle-2 \sin (2 t), 2,2 \cos (2 t)\rangle$ and $\left|r^{\prime}(t)\right|=\sqrt{4 \sin ^{2}(2 t)+4+4 \cos ^{2}(2 t)}=\sqrt{8}$. So the unit tangent vector is $T(t)=\frac{r^{\prime}(t)}{\left|r^{\prime}(t)\right|}=\frac{1}{\sqrt{8}}\langle-2 \sin (2 t), 2,2 \cos (2 t)\rangle=\left\langle-\frac{\sin (2 t)}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{\cos (2 t)}{\sqrt{2}}\right\rangle$.

Now $T^{\prime}(t)=\frac{1}{\sqrt{2}}\langle-2 \cos (2 t), 0,-2 \sin (2 t)\rangle$ and $\left|T^{\prime}(t)\right|=\sqrt{2}$. So the unit normal vector is $N(t)=\frac{T^{\prime}(t)}{\left|T^{\prime}(t)\right|}=\langle-\cos (2 t), 0,-\sin (2 t)\rangle$.

Calculus IIIA: page 1 of 4

The binormal vector is

$$
\begin{aligned}
B(t)=T(t) & \times N(t)=\langle-\cos (2 t), 0,-\sin (2 t)\rangle \\
B(t)=T(t) \times N(t) & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
-\frac{\sin (2 t)}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{\cos (2 t)}{\sqrt{2}} \\
-\cos (2 t) & 0 & -\sin (2 t)
\end{array}\right| \\
& =\left|\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{\cos (2 t)}{\sqrt{2}} \\
0 & -\sin (2 t)
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
-\frac{\sin (2 t)}{\sqrt{2}} & \frac{\cos (2 t)}{\sqrt{2}} \\
-\cos (2 t) & -\sin (2 t)
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
-\frac{\sin (2 t)}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\cos (2 t) & 0
\end{array}\right| \vec{k} \\
& =\left\langle-\frac{\sin (2 t)}{\sqrt{2}},-\frac{1}{\sqrt{2}}, \frac{\cos (2 t)}{\sqrt{2}}\right\rangle .
\end{aligned}
$$

The curvature $k(t)=\frac{\left|T^{\prime}(t)\right|}{\left|r^{\prime}(t)\right|}=\frac{\sqrt{2}}{\sqrt{8}}=\frac{1}{2}$.
3. (15 pts) Find the arc-length of the curve $r(t)=\left\langle t^{2}, \ln (t), 2 t\right\rangle$ when $1 \leq$ $t \leq 2$.
Solution. Given $r(t)=\left\langle t^{2}, \ln (t), 2 t\right\rangle$, we have $r^{\prime}(t)=\left\langle 2 t, \frac{1}{t}, 2\right\rangle$ and $\left|r^{\prime}(t)\right|=$ $\sqrt{4 t^{2}+\frac{1}{t^{2}}+4}=\sqrt{\left(2 t+\frac{1}{t}\right)^{2}}=2 t+\frac{1}{t}$. Hence the arc-length of the curve $r(t)=\left\langle t^{2}, \ln (t), 2 t\right\rangle$ between $1 \leq t \leq 2$ is $\int_{1}^{2}\left|r^{\prime}(t)\right| d t=\int_{1}^{2}\left(2 t+\frac{1}{t}\right) d t=$ $t^{2}+\left.\ln (t)\right|_{1} ^{2}=4+\ln (2)-(1+\ln (1))=3+\ln (2)$.
4. (30 pts, 10 for each) Find the domain of the following functions and sketch the level curves of the following functions for the listed k values.
4.(a) $f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$. $k=0,1,2,3$.

Solution. The domain of f is $\left\{(x, y) \mid x^{2}+y^{2} \neq 0\right\}=\{(x, y) \mid(x . y) \neq(0,0)\}$.
The level curve for $k=0$ is determined by $f(x, y)=0$, i.e. $\frac{x^{2}-y^{2}}{x^{2}+y^{2}}=0$. This is the same as $x^{2}-y^{2}=0$, so $x=y$ or $x=-y$. But $(0,0)$ is not in the domain. Therefore the level curve for $k=0$ looks like the following graph.

The level curve for $k=1$ is determined by $f(x, y)=1$, i.e. $\frac{x^{2}-y^{2}}{x^{2}+y^{2}}=1$. This is the same as $x^{2}-y^{2}=x^{2}+y^{2}$, so $2 y^{2}=0$ which is $y=0$. But $(0,0)$ is not in the domain. Therefore the level curve for $k=1$ looks like the following graph.

The level curve for $k=2$ is determined by $f(x, y)=2$, i.e. $\frac{x^{2}-y^{2}}{x^{2}+y^{2}}=2$. This is the same as $x^{2}-y^{2}=2 x^{2}+2 y^{2}$, so $x^{2}+3 y^{2}=0$ which is $(x, y)=$
$(0,0)$. But $(0,0)$ is not in the domain. Therefore the level curve for $k=2$ is a empty set.
The level curve for $k=3$ is determined by $f(x, y)=3$, i.e. $\frac{x^{2}-y^{2}}{x^{2}+y^{2}}=3$. This is the same as $x^{2}-y^{2}=3 x^{2}+3 y^{2}$, so $2 x^{2}+4 y^{2}=0$ which is $(x, y)=(0,0)$. But $(0,0)$ is not in the domain. Therefore the level curve for $k=3$ is a empty set.
4.(b) $g(x, y)=\frac{1}{1+x^{2}+y^{2}} . k=0,1, \frac{1}{2}, \frac{1}{5}$.

Solution. The domain of g is $\left\{(x, y) \mid 1+x^{2}+y^{2} \neq 0\right\}=\left\{(x, y) \mid(x, y) \in R^{2}\right\}$.
The level curve for $k=0$ is determined by $g(x, y)=0$, i.e. $\frac{1}{1+x^{2}+y^{2}}=0$ which has no solution. Therefore the level curve for $k=0$ is a empty set.
The level curve for $k=1$ is determined by $g(x, y)=1$, i.e. $\frac{1}{1+x^{2}+y^{2}}=1$ or $x^{2}+y^{2}=0$. Thus $(x, y)=(0,0)$.
The level curve for $k=\frac{1}{2}$ is determined by $g(x, y)=\frac{1}{2}$, i.e. $\frac{1}{1+x^{2}+y^{2}}=\frac{1}{2}$ or $x^{2}+y^{2}=1$.
The level curve for $k=\frac{1}{5}$ is determined by $g(x, y)=\frac{1}{5}$, i.e. $\frac{1}{1+x^{2}+y^{2}}=\frac{1}{5}$ or $x^{2}+y^{2}=4$.
4.(c) $h(x, y)=\sqrt{x^{2}-y^{2}} \cdot k=0,1,2,3$.

Solution. The domain of h is $\left\{(x, y) \mid x^{2}-y^{2} \geq 0\right\}=\left\{(x, y) \mid x^{2} \geq y^{2}\right\}$.
The level curve for $k=0$ is determined by $h(x, y)=0$, i.e. $\sqrt{x^{2}-y^{2}}=$ 0 or $x=y$ or $x=-y$.

The level curve for $k=1$ is determined by $h(x, y)=1$, i.e. $\sqrt{x^{2}-y^{2}}=$ 1 or $x^{2}-y^{2}=1$.

The level curve for $k=2$ is determined by $h(x, y)=2$, i.e. $\sqrt{x^{2}-y^{2}}=$ 2 or $x^{2}-y^{2}=4$.

The level curve for $k=3$ is determined by $h(x, y)=3$, i.e. $\sqrt{x^{2}-y^{2}}=$ 3 or $x^{2}-y^{2}=3$.

