Solution to Problem Set #4

- 1. (a) (15 pts) Find parametric equations for the tangent line to the curve $r(t) = \langle t^3, 5t, t^4 \rangle$ at the point (-1, -5, 1).
 - (b) (15 pts) At what point on the curve $r(t) = \langle t^3, 5t, t^4 \rangle$ is the normal plane (this is the plane that is perpendicular to the tangent line) parallel to the plane 12x + 5y + 16z = 3?

Solution. (a) Solving 5t = -1 (or $t^3 = -5$), we get t = -1. So we have r(-1) = (-1, -5, 1). Taking the derivative of r(t), we get r'(t) = $\langle 3t^2, 5, 4t^3 \rangle$. Thus the tangent vector at t = -1 is $r'(-1) = \langle 3, 5, -4 \rangle$. Therefore parametric equations for the tangent line is x = -1 + 3t, y = -5 + 5t and z = 1 - 4t.

(b) The tangent vector at any time t is $r'(t) = \langle 3t^2, 5, 4t^3 \rangle$. The normal vector of the normal plane is parallel to $r'(t) = \langle 3t^2, 5, 4t^3 \rangle$. The normal vector of 12x + 5y + 16z = 3 is $\langle 12, 5, 16 \rangle$. So $\frac{12}{3t^2} = \frac{5}{5} = \frac{16}{4t^3}$. This implies that $3t^2 = 12$ and $4t^3 = 16$. So $t = \pm 2$ and $t = \pm \sqrt[3]{2}$. Thus we don't have a solution for this problem.

(Remark: The normal plane of this problem should have been 12x + 5y + 32z = 3. Then we have $\frac{12}{3t^2} = \frac{5}{5} = \frac{32}{4t^3}$. So $3t^2 = 12$ and $4t^3 = 32$. So $t = \pm 2$ and t = 2. Hence t = 2 is a solution of $\frac{12}{3t^2} = \frac{5}{5} = \frac{32}{4t^3}$. The points that we want to find is $r(2) = \langle 8, 10, 16 \rangle$ and $r(-2) = \langle 8, 10, 16 \rangle$

 $\langle -8, -10, 16 \rangle$.)

2. (25 pts, 10 for unit normal, 10 for unit tangent, 5 for curvature) Find the unit tangent T, unit normal N and unit binormal vectors B for the curve $r(t) = \langle \cos(2t), 2t, \sin(2t) \rangle$. Then calculate the curvature.

Solution. Given $r(t) = \langle \cos(2t), 2t, \sin(2t) \rangle$, we have $r'(t) = \langle -2\sin(2t), 2, 2\cos(2t) \rangle$ and $|r'(t)| = \sqrt{4\sin^2(2t) + 4 + 4\cos^2(2t)} = \sqrt{8}$. So the unit tangent vector is $T(t) = \frac{r'(t)}{|r'(t)|} = \frac{1}{\sqrt{8}} \langle -2\sin(2t), 2, 2\cos(2t) \rangle = \langle -\frac{\sin(2t)}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{\cos(2t)}{\sqrt{2}} \rangle$. Now $T'(t) = \frac{1}{\sqrt{2}} \langle -2\cos(2t), 0, -2\sin(2t) \rangle$ and $|T'(t)| = \sqrt{2}$. So the unit

normal vector is $N(t) = \frac{T'(t)}{|T'(t)|} = \langle -\cos(2t), 0, -\sin(2t) \rangle$.

Calculus IIIA: page 1 of 4

The binormal vector is

$$B(t) = T(t) \times N(t) = \langle -\cos(2t), 0, -\sin(2t) \rangle$$

$$B(t) = T(t) \times N(t) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -\frac{\sin(2t)}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{\cos(2t)}{\sqrt{2}} \\ -\cos(2t) & 0 & -\sin(2t) \end{vmatrix}$$

$$= \begin{vmatrix} \frac{1}{\sqrt{2}} & \frac{\cos(2t)}{\sqrt{2}} \\ 0 & -\sin(2t) \end{vmatrix} | \vec{i} - \begin{vmatrix} -\frac{\sin(2t)}{\sqrt{2}} & \frac{\cos(2t)}{\sqrt{2}} \\ -\cos(2t) & -\sin(2t) \end{vmatrix} | \vec{j} + \begin{vmatrix} -\frac{\sin(2t)}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\cos(2t) & 0 \end{vmatrix} | \vec{k}$$

$$= \langle -\frac{\sin(2t)}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, \frac{\cos(2t)}{\sqrt{2}} \rangle.$$
The curvature $k(t) = \frac{|T'(t)|}{|r'(t)|} = \frac{\sqrt{2}}{\sqrt{8}} = \frac{1}{2}.$

3. (15 pts) Find the arc-length of the curve $r(t) = \langle t^2, \ln(t), 2t \rangle$ when $1 \le t \le 2$.

Solution. Given $r(t) = \langle t^2, \ln(t), 2t \rangle$, we have $r'(t) = \langle 2t, \frac{1}{t}, 2 \rangle$ and $|r'(t)| = \sqrt{4t^2 + \frac{1}{t^2} + 4} = \sqrt{(2t + \frac{1}{t})^2} = 2t + \frac{1}{t}$. Hence the arc-length of the curve $r(t) = \langle t^2, \ln(t), 2t \rangle$ between $1 \le t \le 2$ is $\int_1^2 |r'(t)| dt = \int_1^2 (2t + \frac{1}{t}) dt = t^2 + \ln(t)|_1^2 = 4 + \ln(2) - (1 + \ln(1)) = 3 + \ln(2)$.

4. (30 pts, 10 for each) Find the domain of the following functions and sketch the level curves of the following functions for the listed *k* values.

4.(a)
$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$
. $k = 0, 1, 2, 3$.

Solution. The domain of f is $\{(x,y)|x^2 + y^2 \neq 0\} = \{(x,y)|(x,y) \neq (0,0)\}$. The level curve for k = 0 is determined by f(x,y) = 0, i.e. $\frac{x^2 - y^2}{x^2 + y^2} = 0$.

The level curve for k = 0 is determined by f(x, y) = 0, i.e. $\frac{x^2 - y^2}{x^2 + y^2} = 0$. This is the same as $x^2 - y^2 = 0$, so x = y or x = -y. But (0, 0) is not in the domain. Therefore the level curve for k = 0 looks like the following graph.

The level curve for k = 1 is determined by f(x, y) = 1, i.e. $\frac{x^2 - y^2}{x^2 + y^2} = 1$. This is the same as $x^2 - y^2 = x^2 + y^2$, so $2y^2 = 0$ which is y = 0. But (0, 0) is not in the domain. Therefore the level curve for k = 1 looks like the following graph.

The level curve for k = 2 is determined by f(x, y) = 2, i.e. $\frac{x^2 - y^2}{x^2 + y^2} = 2$. This is the same as $x^2 - y^2 = 2x^2 + 2y^2$, so $x^2 + 3y^2 = 0$ which is (x, y) =

(0,0). But (0,0) is not in the domain. Therefore the level curve for k = 2 is a empty set.

The level curve for k = 3 is determined by f(x, y) = 3, i.e. $\frac{x^2 - y^2}{x^2 + y^2} = 3$. This is the same as $x^2 - y^2 = 3x^2 + 3y^2$, so $2x^2 + 4y^2 = 0$ which is (x,y) = (0,0). But (0,0) is not in the domain. Therefore the level curve for k = 3 is a empty set.

4.(b)
$$g(x,y) = \frac{1}{1+x^2+y^2}$$
. $k = 0, 1, \frac{1}{2}, \frac{1}{5}$.

Solution. The domain of g is $\{(x, y)|1 + x^2 + y^2 \neq 0\} = \{(x, y)|(x.y) \in R^2\}$. The level curve for k = 0 is determined by g(x, y) = 0, i.e. $\frac{1}{1+x^2+y^2} = 0$ which has no solution. Therefore the level curve for k = 0 is a empty set.

The level curve for k = 1 is determined by g(x, y) = 1, i.e. $\frac{1}{1+x^2+y^2} = 1$ or $x^2 + y^2 = 0$. Thus (x, y) = (0, 0).

The level curve for $k = \frac{1}{2}$ is determined by $g(x, y) = \frac{1}{2}$, i.e. $\frac{1}{1+x^2+y^2} = \frac{1}{2}$ or $x^2 + y^2 = 1$.

The level curve for $k = \frac{1}{5}$ is determined by $g(x, y) = \frac{1}{5}$, i.e. $\frac{1}{1+x^2+y^2} = \frac{1}{5}$ or $x^2 + y^2 = 4$.

4.(c)
$$h(x,y) = \sqrt{x^2 - y^2}$$
. $k = 0, 1, 2, 3$.

Solution. The domain of *h* is $\{(x, y)|x^2 - y^2 \ge 0\} = \{(x, y)|x^2 \ge y^2\}.$

The level curve for k = 0 is determined by h(x, y) = 0, i.e. $\sqrt{x^2 - y^2} = 0$ or x = y or x = -y.

The level curve for k = 1 is determined by h(x, y) = 1, i.e. $\sqrt{x^2 - y^2} = 1$ or $x^2 - y^2 = 1$.

The level curve for k = 2 is determined by h(x, y) = 2, i.e. $\sqrt{x^2 - y^2} = 2$ or $x^2 - y^2 = 4$.

The level curve for k = 3 is determined by h(x, y) = 3, i.e. $\sqrt{x^2 - y^2} = 3$ or $x^2 - y^2 = 3$.