Problem Set #5 Due: Wednesday, Feb. 22

- **1.** Show that $v(x, y, t) = \frac{1}{t}e^{(\frac{-x^2-y^2}{4t})}$ is a solution of the heat equation $v_t = v_{xx} + v_{yy}$. (Hint: Find v_t , v_{xx} and v_{yy} first. Then verify $v_t v_{xx} v_{yy} = 0$.)
- 2. (a) Find an equation of the tangent plane to the surface $z = f(x, y) = \sqrt{x^2 + y^2}$ at the point (5, 12, 13)
 - (b) Find the linear approximation of the function $f(x,y) = \sqrt{x^2 + y^2}$ at (5, 12) and use it to estimate $\sqrt{(5.1)^2 + (11.9)^2}$.
- **3.** Let z = f(x, y), $x = r \cos(\theta)$ and $y = r \sin(\theta)$. Show that

$$(\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2 = (\frac{\partial z}{\partial r})^2 + \frac{1}{r^2}(\frac{\partial z}{\partial \theta})^2.$$

- 4. (a) Find equations of the tangent plane and the normal line to the surface $2x^2 = y^2 + z^2 12$ at the point (2, -4, 2).
 - (b) Find the points on the surface $2x^2 = y^2 + z^2 12$ where the tangent plane is parallel to the plane 4x + 4y + 2z = 1.
- **5.** The temperature at any point in the plane is given by the function

$$T(x,y) = \frac{10}{x^2 + y^2 + 1} \,.$$

- (a) Find $\nabla T(x, y)$.
- (b) Find the direction of the greatest increase in temperature at the point (3,4). What is the magnitude of the greatest increase?
- (c) Find the direction of the greatest decrease in temperature at the point (3, 4). What is the magnitude of the greatest decrease?
- (d) Find a direction at the point (3,4) in which the temperature does not increase or decrease.
- (e) Find the rate of change of T at (3,4) in the direction (5,12).
- (f) Find the directional derivative of T at (3,4) in the direction $\langle 4,3\rangle$.