Problem Set \#5
 Due: Wednesday, Feb. 22

1. Show that $v(x, y, t)=\frac{1}{t} e^{\left(\frac{-x^{2}-y^{2}}{4 t}\right)}$ is a solution of the heat equation $v_{t}=v_{x x}+v_{y y}$. (Hint: Find $v_{t}, v_{x x}$ and $v_{y y}$ first. Then verify $v_{t}-v_{x x}-v_{y y}=$ 0.$)$
2. (a) Find an equation of the tangent plane to the surface $z=f(x, y)=$ $\sqrt{x^{2}+y^{2}}$ at the point $(5,12,13)$
(b) Find the linear approximation of the function $f(x, y)=\sqrt{x^{2}+y^{2}}$ at $(5,12)$ and use it to estimate $\sqrt{(5.1)^{2}+(11.9)^{2}}$.
3. Let $z=f(x, y), x=r \cos (\theta)$ and $y=r \sin (\theta)$.

Show that

$$
\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}=\left(\frac{\partial z}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial z}{\partial \theta}\right)^{2} .
$$

4. (a) Find equations of the tangent plane and the normal line to the surface $2 x^{2}=y^{2}+z^{2}-12$ at the point $(2,-4,2)$.
(b) Find the points on the surface $2 x^{2}=y^{2}+z^{2}-12$ where the tangent plane is parallel to the plane $4 x+4 y+2 z=1$.
5. The temperature at any point in the plane is given by the function

$$
T(x, y)=\frac{10}{x^{2}+y^{2}+1}
$$

(a) Find $\nabla T(x, y)$.
(b) Find the direction of the greatest increase in temperature at the point $(3,4)$. What is the magnitude of the greatest increase?
(c) Find the direction of the greatest decrease in temperature at the point $(3,4)$. What is the magnitude of the greatest decrease?
(d) Find a direction at the point $(3,4)$ in which the temperature does not increase or decrease.
(e) Find the rate of change of T at $(3,4)$ in the direction $\langle 5,12\rangle$.
(f) Find the directional derivative of T at $(3,4)$ in the direction $\langle 4,3\rangle$.

