Solution to Problem Set \#5

1. (20 pts) Show that $v(x, y, t)=\frac{1}{t} e^{\left(\frac{-x^{2}-y^{2}}{4 t}\right)}$ is a solution of the heat equation
$v_{t}=v_{x x}+v_{y y}$. (Hint: Find $v_{t}, v_{x x}$ and $v_{y y}$ first. Then verify $v_{t}-v_{x x}-v_{y y}=$ 0.$)$

Solution. We have

$$
\begin{gathered}
v_{t}=\left(-\frac{1}{t^{2}}+\frac{x^{2}+y^{2}}{4 t^{3}}\right) \cdot e^{\left(\frac{-x^{2}-y^{2}}{4 t}\right)}, \\
v_{x}=-\frac{x}{2 t^{2}} \cdot e^{\left(\frac{-x^{2}-y^{2}}{4 t}\right)}, v_{x x}=\left(-\frac{1}{2 t^{2}}+\frac{x^{2}}{4 t^{3}}\right) \cdot e^{\left(\frac{-x^{2}-y^{2}}{4 t}\right)}, \\
v_{y}=-\frac{y}{2 t^{2}} \cdot e^{\left(\frac{-x^{2}-y^{2}}{4 t}\right)}, v_{y y}=\left(-\frac{1}{2 t^{2}}+\frac{y^{2}}{4 t^{3}}\right) \cdot e^{\left(\frac{-x^{2}-y^{2}}{4 t}\right)}
\end{gathered}
$$

and

$$
v_{x x}+v_{y y}=\left(-\frac{1}{t^{2}}+\frac{x^{2}+y^{2}}{4 t^{3}}\right) \cdot e^{\left(\frac{-x^{2}-y^{2}}{4 t}\right)} .
$$

Note that $v(x, y, t)=v(y, x, t)$. The formula of $v_{y y}$ can be obtained from $v_{x x}$ by exchanging x and y. Thus we have $v_{t}-v_{x x}-v_{y y}=0$.
2. (a) (10 pts) Find an equation of the tangent plane to the surface $z=f(x, y)=\sqrt{x^{2}+y^{2}}$ at the point $(5,12,13)$
(b) (10 pts) Find the linear approximation of the function $f(x, y)=$ $\sqrt{x^{2}+y^{2}}$ at $(5,12)$ and use it to estimate $\sqrt{(5.1)^{2}+(11.9)^{2}}$.
Solution. The partial derivatives are $f_{x}(x, y)=\frac{x}{\sqrt{x^{2}+y^{2}}}, f_{y}(x, y)=\frac{y}{\sqrt{x^{2}+y^{2}}}$, $f_{x}(5,12)=\frac{5}{13}$ and $f_{x}(5,12)=\frac{12}{13}$.
The linear approximation of $f(x, y)$ at $(5,12)$ is

$$
\begin{aligned}
L(x, y) & =f(5,12)+f_{x}(5,12)(x-5)+f_{y}(5,12)(y-12) \\
& =13+\frac{5}{13}(x-5)+\frac{12}{13}(y-12) .
\end{aligned}
$$

Thus $L(5.1,11.9)=13+\frac{5}{13} \cdot 0.1+\frac{12}{13}(-0.1)=13-\frac{0.7}{13} \approx 12.946$. Hence $\sqrt{(5.1)^{2}+(11.9)^{2}}$ is about 12.946 .
3. (16 pts) Let $z=f(x, y), x=r \cos (\theta)$ and $y=r \sin (\theta)$.

Show that

$$
\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}=\left(\frac{\partial z}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial z}{\partial \theta}\right)^{2} .
$$

Solution. Since $x=r \cos (\theta)$ and $y=r \sin (\theta)$, the Chain rule yields:

$$
\begin{gathered}
\frac{\partial z}{\partial r}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial r}=\cos (\theta) \frac{\partial z}{\partial x}+\sin (\theta) \frac{\partial z}{\partial y} \\
\frac{\partial z}{\partial \theta}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial \theta}=-r \sin (\theta) \frac{\partial z}{\partial x}+r \cos (\theta) \frac{\partial z}{\partial y}
\end{gathered}
$$

Squaring these equation gives:

$$
\begin{aligned}
\left(\frac{\partial z}{\partial r}\right)^{2} & =\left[\cos (\theta) \frac{\partial z}{\partial x}+\sin (\theta) \frac{\partial z}{\partial y}\right]^{2} \\
& =\cos ^{2}(\theta)\left(\frac{\partial z}{\partial x}\right)^{2}+2 \sin (\theta) \cos (\theta) \frac{\partial z}{\partial x} \frac{\partial z}{\partial y}+\sin ^{2}(\theta)\left(\frac{\partial z}{\partial y}\right)^{2} \\
\left(\frac{\partial z}{\partial \theta}\right)^{2}= & \left(r \sin (\theta) \frac{\partial z}{\partial x}+r \cos (\theta) \frac{\partial z}{\partial y}\right)^{2} \\
= & r^{2} \sin ^{2}(\theta)\left(\frac{\partial z}{\partial x}\right)^{2}-2 r^{2} \sin (\theta) \cos (\theta) \frac{\partial z}{\partial x} \frac{\partial z}{\partial y}+r^{2} \cos ^{2}(\theta)\left(\frac{\partial z}{\partial y}\right)^{2} .
\end{aligned}
$$

Therefore, we have
$\left(\frac{\partial z}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial z}{\partial \theta}\right)^{2}=\left(\sin ^{2}(\theta)+\cos ^{2}(\theta)\right)\left[\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}\right]=\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}$.
4. (a) (10 pts) Find equations of the tangent plane and the normal line to the surface $2 x^{2}=y^{2}+z^{2}-12$ at the point $(2,-4,2)$.
(b) (10 pts) Find the points on the surface $2 x^{2}=y^{2}+z^{2}-12$ where the tangent plane is parallel to the plane $4 x+4 y+2 z=1$.
Solution. (a) In general, the normal vector for the tangent plane to the level surface of $F(x, y, z)=k$ at the point (a, b, c) is $\nabla F(a, b, c)$.

The surface $2 x^{2}=y^{2}+z^{2}-12$ can be rewritten as $2 x^{2}-y^{2}-z^{2}=-12$. We have $F(x, y, z)=2 x^{2}-y^{2}-z^{2}=-12, \nabla F(x, y, z)=\langle 4 x,-2 y,-2 z\rangle$ and $\nabla F(2,-4,2)=\langle 8,8,-4\rangle$ Thus the equation of the tangent plane to the surface $2 x^{2}=y^{2}+z^{2}-12$ at the point $(2,-4,2)$ is $\langle 8,8,-4\rangle \cdot\langle x-2, y+4, z-2\rangle=0$ which yields
$8 x-16+8 y+32-4 z+8=0$. It can be simplified as $8 x+8 y-4 z+24=0$ or $2 x+2 y-z+6=0$.
The normal line equation at $(2,-4,2)$ is $x=2+8 t, y=-4+8 t$ and $z=2-4 t$.
(b) The normal vector for the tangent plane to $F(x, y, z)=2 x^{2}-y^{2}-$ $z^{2}=-12$ at the point (a, b, c) is $\nabla F(a, b, c)=\langle 4 a,-2 b,-2 c\rangle$. The points (a, b, c) on the surface above where the tangent plane is parallel to
$4 x+4 y+2 z=1$ should have its normal vector parallel to $\langle 4,4,2\rangle$. Thus $\langle 4 a,-2 b,-2 c\rangle$ is parallel to $\langle 4,4,2\rangle$. We $\frac{4 a}{4}=\frac{-2 b}{4}=\frac{-2 c}{2}$. Hence $b=-2 a$, $c=-a$. Since $(a, b, c)=(a,-2 a,-a)$ lies on the surface

$$
2 x^{2}-y^{2}-z^{2}=-12
$$

, we get $2 a^{2}-4 a^{2}-a^{2}=-12$, i.e $3 a^{2}=12$ and $a= \pm 2$. The points we are looking for are $(a, b, c)=(2,-4,-2)$ or $(a, b, c)=(-2,4,2)$.
5. (24 pts) The temperature at any point in the plane is given by the function

$$
T(x, y)=\frac{10}{x^{2}+y^{2}+1} .
$$

(a) Find $\nabla T(x, y)$.
(b) Find the direction of the greatest increase in temperature at the point (3,4). What is the magnitude of the greatest increase?
(c) Find the direction of the greatest decrease in temperature at the point $(3,4)$. What is the magnitude of the greatest decrease?
(d) Find a direction at the point $(3,4)$ in which the temperature does not increase or decrease.
(e) Find the rate of change of T at $(3,4)$ in the direction $\langle 5,12\rangle$.
(f) Find the directional derivative of T at $(3,4)$ in the direction $\langle 4,3\rangle$.

Solution. (a) We have

$$
\nabla T(x, y)=\left\langle T_{x}(x, y), T_{y}(x, y)\right\rangle=\left\langle-\frac{20 x}{\left(x^{2}+y^{2}+1\right)^{2}},-\frac{20 y}{\left(x^{2}+y^{2}+1\right)^{2}}\right\rangle .
$$

(b) Since

$$
\nabla T(x, y)=\left(-\frac{20 x}{\left(x^{2}+y^{2}+1\right)^{2}}\right) \vec{i}+\left(-\frac{20 y}{\left(x^{2}+y^{2}+1\right)^{2}}\right) \vec{j},
$$

the direction of the greatest increase in temperature is

$$
\nabla T(3,4)=-\frac{60}{676} \vec{i}-\frac{80}{676} \vec{j}=-\frac{15}{169} \vec{i}-\frac{20}{169} \vec{j}=-\frac{5}{169}(3 \vec{i}+4 \vec{j})
$$

and the magnitude is $\|\nabla T(3,4)\|=\frac{5}{169} \sqrt{(3)^{2}+(4)^{2}}=\frac{25}{169}$.
(c) The direction of greatest decrease in temperature is

$$
-\nabla T(3,4)=\frac{5}{169}(3 \vec{i}+4 \vec{j})
$$

which is a positive scalar multiply of $3 \vec{i}+4 \vec{j}$.
The magnitude is $\|-\nabla T(3,4)\|=\frac{25}{169}$.
(d) If \vec{u} is a direction at which the temperature does not increase or decrease, then $D_{\vec{u}} T(3,4)=\nabla T(3,4) \cdot \vec{u}=0$. This is equivalent to saying that \vec{u} is perpendicular to $\nabla T(3,4)$. If $\vec{u}=u_{1} \vec{i}+u_{2} \vec{j}$ then we have $0=-\frac{5}{169}(3 \vec{i}+4 \vec{j}) \cdot \vec{u}=-\frac{5}{169}\left(3 u_{1}+4 u_{2}\right)$. We may choose $\vec{u}=4 \vec{i}-3 \vec{j}$. Therefore, the temperature does not change in the direction $4 \vec{i}-3 \vec{j}$.
(e) The unit vector in the direction $\langle 5,12\rangle$ is $\vec{u}=\frac{1}{13}\langle 5,12\rangle$. Thus the rate of change of T at $(3,4)$ in the direction $\langle 5,12\rangle$ is

$$
\nabla T(3,4) \cdot \vec{u}=-\frac{5}{169}(3 \vec{i}+4 \vec{j}) \cdot \frac{1}{13}(5 \vec{i}+12 \vec{j})=-\frac{5}{2187}(63)=-\frac{35}{243} .
$$

(f) The unit vector in the direction $\langle 4,3\rangle$ is $\vec{u}=\frac{1}{5}\langle 4,3\rangle$. Thus the directional derivative of T at $(3,4)$ in the direction $\langle 4,3\rangle$ is

$$
\nabla T(3,4) \cdot \vec{u}=-\frac{5}{169}(3 \vec{i}+4 \vec{j}) \cdot \frac{1}{5}(4 \vec{i}+3 \vec{j})=-\frac{24}{169} .
$$

