Solution to Problem Set \#6

1. Use Lagrange multipliers to find the maximum/minimum and maximizer/minimizer of f subject to the given constraint.
(a) (50 point) $f(x, y)=x y, 4 x^{2}+y^{2}=1$

Solution. Let $f(x, y)=x y$ and $g_{(}(x, y)=4 x^{2}+y^{2}$. The necessary conditions for the optimizer (x, y) are
$\left.\nabla f(x, y)=\lambda \nabla g_{(} x, y\right)$ and the constraint equations $4 x^{2}+y^{2}=1$ which are:
Since $\nabla f(x, y)=(y, x)$ and $\nabla g(x, y)=(8 x, 2 y)$, thus (x, y) must satisfy

$$
\begin{align*}
y & =8 \lambda x \tag{0.0.1}\\
x & =2 \lambda y \tag{0.0.2}\\
4 x^{2}+y^{2} & =1 \tag{0.0.3}
\end{align*}
$$

Method 1: From (1), (2) and (3), we know $\lambda \neq 0$ (b/c $\lambda=0$ implies $x=0$ and $y=0$ which is impossible by $\left.4 x^{2}+y^{2}=1\right), \lambda=\frac{y}{8 x}=\frac{x}{2 y}$. This gives $2 y^{2}=8 x^{2}$ and $y=2 x$ or $y=-2 x$. Using $4 x^{2}+y^{2}=1$, we have $(x, y)=\left(\frac{1}{\sqrt{8}}, \frac{2}{\sqrt{8}}\right),\left(\frac{1}{\sqrt{8}},-\frac{2}{\sqrt{8}}\right),\left(-\frac{1}{\sqrt{8}},-\frac{2}{\sqrt{8}}\right)$ or $\left(-\frac{1}{\sqrt{8}}, \frac{2}{\sqrt{8}}\right)$.
Recall $f(x, y)=x y$. Evaluate $f(0,0)=0, f\left(\frac{1}{\sqrt{8}}, \frac{2}{\sqrt{8}}\right)=\frac{1}{4}, f\left(\frac{1}{\sqrt{8}},-\frac{2}{\sqrt{8}}\right)=$ $-\frac{1}{4}, f\left(-\frac{1}{\sqrt{8}},-\frac{2}{\sqrt{8}}\right)=-\frac{1}{4}$ and $f\left(-\frac{1}{\sqrt{8}}, \frac{2}{\sqrt{8}}\right)=\frac{1}{4}$. Thus the maximum is $\frac{1}{4}$, the minimum is $-\frac{1}{4}$, the maximizers are $\left(\frac{1}{\sqrt{8}}, \frac{2}{\sqrt{8}}\right),\left(-\frac{1}{\sqrt{8}},-\frac{2}{\sqrt{8}}\right)$, and the minimizers are $\left(\frac{1}{\sqrt{8}},-\frac{2}{\sqrt{8}}\right),\left(-\frac{1}{\sqrt{8}}, \frac{2}{\sqrt{8}}\right)$.

Method 2: From (1), (2), we get $x y=8 \lambda x^{2} x y=2 \lambda y^{2}$. This gives $8 \lambda x^{2}=2 \lambda y^{2}, 8 \lambda x^{2}-2 \lambda y^{2}=2 \lambda\left(4 x^{2}-y^{2}\right)=2 \lambda(2 x-y)(2 x+y)=0$. So $\lambda=0$ (impossible by the reason above) or $y=2 x$ or $y=-2 x$. Using $4 x^{2}+y^{2}=1$ and $y= \pm 2 x$, we get $8 x^{2}=1$ and $x= \pm \frac{1}{\sqrt{8}}$. So $(x, y)=\left(\frac{1}{\sqrt{8}}, \frac{2}{\sqrt{8}}\right),\left(\frac{1}{\sqrt{8}},-\frac{2}{\sqrt{8}}\right),\left(-\frac{1}{\sqrt{8}},-\frac{2}{\sqrt{8}}\right)$ or $\left(-\frac{1}{\sqrt{8}}, \frac{2}{\sqrt{8}}\right)$.
Recall $f(x, y)=x y$. Evaluate $f(0,0)=0, f\left(\frac{1}{\sqrt{8}}, \frac{2}{\sqrt{8}}\right)=\frac{1}{4}, f\left(\frac{1}{\sqrt{8}},-\frac{2}{\sqrt{8}}\right)=$ $-\frac{1}{4}, f\left(-\frac{1}{\sqrt{8}},-\frac{2}{\sqrt{8}}\right)=-\frac{1}{4}$ and $f\left(-\frac{1}{\sqrt{8}}, \frac{2}{\sqrt{8}}\right)=\frac{1}{4}$. Thus the maximum is $\frac{1}{4}$, the minimum is $-\frac{1}{4}$, the maximizers are $\left(\frac{1}{\sqrt{8}}, \frac{2}{\sqrt{8}}\right),\left(-\frac{1}{\sqrt{8}},-\frac{2}{\sqrt{8}}\right)$, and the minimizers are $\left(\frac{1}{\sqrt{8}},-\frac{2}{\sqrt{8}}\right),\left(-\frac{1}{\sqrt{8}}, \frac{2}{\sqrt{8}}\right)$.
(b) (50 point) $f(x, y, z)=2 x^{2}-2 y+z^{2}, x^{2}+y^{2}+z^{2}=1$

Solution. Let $f(x, y, z)=2 x^{2}-2 y+z^{2}, g_{(}(x, y, z)=x^{2}+y^{2}+z^{2}-1$. The necessary conditions for the optimizer (x, y, z) are
$\nabla f(x, y, z)=\lambda \nabla g_{(}(x, y, z)$ and the constraint equations which are:
(0.0.4)
(0.0.5)
(0.0.6)

$$
\begin{aligned}
4 x & =2 \lambda x \\
-2 & =2 \lambda y \\
2 z & =2 \lambda z \\
x^{2}+y^{2}+z^{2} & =1
\end{aligned}
$$

(0.0.7)

From (4), we have $x=0$ or $\lambda=2$.
Case $1 x=0$: We have $y=-\frac{1}{\lambda}$ and $\lambda \neq 0$ from equation (5).
From equation (6), we have $2 z-2 \lambda z=2 z(1-\lambda)=0$. So $z=0$ or $\lambda=1$.

Case 1a $z=0$: Since $x=0, z=0$ and $x^{2}+y^{2}+z^{2}=1$, we have $y= \pm 1$. So $(x, y, z)=(0,1,0)$ or $(0,-1,0)$

Case 1b $\lambda=1$: From $y=-\frac{1}{\lambda}$, we have $y=-1$. Since $x=0, y=-1$ and $x^{2}+y^{2}+z^{2}=1$, we have $z=0$. So $(x, y, z)=(0,-1,0)$.

Case $2 \lambda=2$: From equation (5), we have $y=-\frac{1}{2}$. From equation (6), we have $2 z=4 z$ and $z=0$. Since Since $z=0, y=-\frac{1}{2}$ and $x^{2}+y^{2}+z^{2}=1$, we have $x= \pm \frac{\sqrt{3}}{2}$. So $(x, y, z)=\left(\pm \frac{\sqrt{3}}{2},-\frac{1}{2}, 0\right)$.

The candidates for maximum or minimum are $(0, \pm 1,0)$ or $(x, y, z)=$ $\left(\pm \frac{\sqrt{3}}{2},-\frac{1}{2}, 0\right)$. Recall that $f(x, y, z)=2 x^{2}-2 y+z^{2}$, we have $f(0,1,0)=$ $-2, f(0,-1,0)=2, f\left(\frac{\sqrt{3}}{2},-\frac{1}{2}, 0\right)=2$ and $f\left(\frac{\sqrt{3}}{2}, \frac{1}{2}, 0\right)=\frac{1}{2}$.
Thus the maximum is 2 , the minimum is -2 , the maximizers are $(0,-1,0)$ and $\left(\frac{\sqrt{3}}{2},-\frac{1}{2}, 0\right)$. The minimizer is $(0,1,0)$.

