Solution to Problem Set #6

- **1.** Use Lagrange multipliers to find the maximum/minimum and maximizer/minimizer of *f* subject to the given constraint.
 - (a) (50 point) f(x, y) = xy, $4x^2 + y^2 = 1$

Solution. Let f(x,y) = xy and $g(x,y) = 4x^2 + y^2$. The necessary conditions for the optimizer (x,y) are

 $abla f(x,y) = \lambda \nabla g(x,y)$ and the constraint equations $4x^2 + y^2 = 1$ which are:

Since $\nabla f(x,y) = (y,x)$ and $\nabla g(x,y) = (8x,2y)$, thus (x,y) must satisfy

$$(0.0.1) y = 8\lambda x$$

 $(0.0.2) x = 2\lambda y$

$$(0.0.3) 4x^2 + y^2 = 1$$

Method 1: From (1), (2) and (3), we know $\lambda \neq 0$ (b/c $\lambda = 0$ implies x = 0 and y = 0 which is impossible by $4x^2 + y^2 = 1$), $\lambda = \frac{y}{8x} = \frac{x}{2y}$. This gives $2y^2 = 8x^2$ and y = 2x or y = -2x. Using $4x^2 + y^2 = 1$, we have $(x, y) = (\frac{1}{\sqrt{8}}, \frac{2}{\sqrt{8}}), (\frac{1}{\sqrt{8}}, -\frac{2}{\sqrt{8}}), (-\frac{1}{\sqrt{8}}, -\frac{2}{\sqrt{8}})$ or $(-\frac{1}{\sqrt{8}}, \frac{2}{\sqrt{8}})$. Recall f(x, y) = xy. Evaluate f(0, 0) = 0, $f(\frac{1}{\sqrt{8}}, \frac{2}{\sqrt{8}}) = \frac{1}{4}$, $f(\frac{1}{\sqrt{8}}, -\frac{2}{\sqrt{8}}) = -\frac{1}{4}$, $f(-\frac{1}{\sqrt{8}}, -\frac{2}{\sqrt{8}}) = -\frac{1}{4}$ and $f(-\frac{1}{\sqrt{8}}, \frac{2}{\sqrt{8}}) = \frac{1}{4}$. Thus the maximum is $\frac{1}{4}$, the minimum is $-\frac{1}{4}$, the maximizers are $(\frac{1}{\sqrt{8}}, \frac{2}{\sqrt{8}})$, $(-\frac{1}{\sqrt{8}}, \frac{2}{\sqrt{8}})$.

Method 2: From (1), (2), we get $xy = 8\lambda x^2 \ xy = 2\lambda y^2$. This gives $8\lambda x^2 = 2\lambda y^2$, $8\lambda x^2 - 2\lambda y^2 = 2\lambda(4x^2 - y^2) = 2\lambda(2x - y)(2x + y) = 0$. So $\lambda = 0$ (impossible by the reason above) or y = 2x or y = -2x. Using $4x^2 + y^2 = 1$ and $y = \pm 2x$, we get $8x^2 = 1$ and $x = \pm \frac{1}{\sqrt{8}}$. So $(x, y) = (\frac{1}{\sqrt{8}}, \frac{2}{\sqrt{8}}), (\frac{1}{\sqrt{8}}, -\frac{2}{\sqrt{8}}), (-\frac{1}{\sqrt{8}}, -\frac{2}{\sqrt{8}})$ or $(-\frac{1}{\sqrt{8}}, \frac{2}{\sqrt{8}})$. Recall f(x, y) = xy. Evaluate f(0, 0) = 0, $f(\frac{1}{\sqrt{8}}, \frac{2}{\sqrt{8}}) = \frac{1}{4}$, $f(\frac{1}{\sqrt{8}}, -\frac{2}{\sqrt{8}}) = -\frac{1}{4}$, $f(-\frac{1}{\sqrt{8}}, -\frac{2}{\sqrt{8}}) = -\frac{1}{4}$ and $f(-\frac{1}{\sqrt{8}}, \frac{2}{\sqrt{8}}) = \frac{1}{4}$. Thus the maximum is $\frac{1}{4}$, the minimum is $-\frac{1}{4}$, the maximizers are $(\frac{1}{\sqrt{8}}, \frac{2}{\sqrt{8}})$, $(-\frac{1}{\sqrt{8}}, -\frac{2}{\sqrt{8}})$, and the minimizers are $(\frac{1}{\sqrt{8}}, -\frac{2}{\sqrt{8}})$, $(-\frac{1}{\sqrt{8}}, \frac{2}{\sqrt{8}})$.

(b) (50 point) $f(x, y, z) = 2x^2 - 2y + z^2$, $x^2 + y^2 + z^2 = 1$

Solution. Let $f(x, y, z) = 2x^2 - 2y + z^2$, $g(x, y, z) = x^2 + y^2 + z^2 - 1$. The necessary conditions for the optimizer (x, y, z) are

 $\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$ and the constraint equations which are:

$$4x = 2\lambda x$$

- (0.0.5) $-2 = 2\lambda y$ (0.0.6) $2z = 2\lambda z$
- (0.0.7) $x^2 + y^2 + z^2 = 1$

From (4), we have x = 0 or $\lambda = 2$.

Case1 x = 0: We have $y = -\frac{1}{\lambda}$ and $\lambda \neq 0$ from equation (5). From equation (6), we have $2z - 2\lambda z = 2z(1 - \lambda) = 0$. So z = 0 or $\lambda = 1$.

Case 1a z = 0: Since x = 0, z = 0 and $x^2 + y^2 + z^2 = 1$, we have $y = \pm 1$. So (x, y, z) = (0, 1, 0) or (0, -1, 0)

Case 1b $\lambda = 1$: From $y = -\frac{1}{\lambda}$, we have y = -1. Since x = 0, y = -1 and $x^2 + y^2 + z^2 = 1$, we have z = 0. So (x, y, z) = (0, -1, 0).

Case 2 $\lambda = 2$: From equation (5), we have $y = -\frac{1}{2}$. From equation (6), we have 2z = 4z and z = 0. Since Since z = 0, $y = -\frac{1}{2}$ and $x^2 + y^2 + z^2 = 1$, we have $x = \pm \frac{\sqrt{3}}{2}$. So $(x, y, z) = (\pm \frac{\sqrt{3}}{2}, -\frac{1}{2}, 0)$.

The candidates for maximum or minimum are $(0, \pm 1, 0)$ or $(x, y, z) = (\pm \frac{\sqrt{3}}{2}, -\frac{1}{2}, 0)$. Recall that $f(x, y, z) = 2x^2 - 2y + z^2$, we have f(0, 1, 0) = -2, f(0, -1, 0) = 2, $f(\frac{\sqrt{3}}{2}, -\frac{1}{2}, 0) = 2$ and $f(\frac{\sqrt{3}}{2}, \frac{1}{2}, 0) = \frac{1}{2}$. Thus the maximum is 2, the minimum is -2, the maximizers are

(0, -1, 0) and $(\frac{\sqrt{3}}{2}, -\frac{1}{2}, 0)$. The minimizer is (0, 1, 0).