## Problem Set \#7

## Due: Wednesday, Mar. 22

1. (a) If $f(x, y)$ gives the pollution density, in micrograms per square meter, and $x$ and $y$ are measured in meters, give the units and practical interpretation of $\iint_{R} f(x, y) d A$.
(b) Using Riemann sums with two subdivisions in each direction, find upper and lower bounds for the volume under the graph of $f(x, y)=2+x y$ above the rectangle $R$ with $0 \leq x \leq 2,0 \leq y \leq 2$.
2. Find the volume of the solid bounded by the surface $z=y \sqrt{y^{2}+x}$ and the planes $x=0, x=1, y=0, y=1$ and $z=0$.
3. Compute the following iterated integrals.
(a) $\int_{0}^{1} \int_{0}^{1} \frac{x y}{\sqrt{x^{2}+y^{2}+1}} d y d x$
(b) $\int_{0}^{1} \int_{0}^{4} e^{y} \sqrt{x+e^{y}} d x d y$
4. Evaluate $\iint_{D} \frac{4 y}{x^{3}+4} d A$ where $D=\{(x, y) \mid 1 \leq x \leq 6,0 \leq y \leq 4 x\}$.
5. Evaluate $\iint_{D} x \sqrt{y^{2}-x^{2}} d A$ where $D=\{(x, y) \mid 0 \leq x \leq y, 0 \leq y \leq 3\}$.
6. Evaluate $\int_{0}^{1} \int_{y}^{1} e^{x^{2}} d x d y$.
7. Evaluate $\int_{0}^{1} \int_{x^{2}}^{1} x^{3} \sin \left(3 y^{3}\right) d y d x$.
