Problem Set \#8
 Due: Wednesday, Mar. 29

1. Find the volume of an ice cream cone bounded by the hemisphere $z=\sqrt{8-x^{2}-y^{2}}$ and the cone $z=\sqrt{x^{2}+y^{2}}$.
2. Evaluate the following integral by converting to polar coordinates.
(a) $\int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}}\left(x^{2}+y^{2}\right)^{\frac{3}{2}} d x d y$
(b) $\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \sin \left(x^{2}+y^{2}\right) d y d x$
3. (a) For $a>0$ find the volume under the graph of $z=e^{-\left(x^{2}+y^{2}\right)}$ above the disk $x^{2}+y^{2} \leq a^{2}$.
(b) What happens to the volume as $a \rightarrow \infty$.
4. Consider a thin plate that occupies the region D bounded by the parabola $y=1-x^{2}, x=0$ and $y=0$ in the first quadrant with density function $\rho(x, y)=x$.
(a) Find the mass of the thin plate.
(b) Find the center of mass of the thin plate.
(c) Find moments of inertia I_{x}, I_{y} and I_{0}.
5. A joint density function is given by

$$
f(x, y)= \begin{cases}k x^{2} & \text { for } 0 \leq x \leq 2 \text { and } 0 \leq y \leq 1, \\ 0 & \text { otherwise. }\end{cases}
$$

(a) Find the value of the constant k.
(b) Find the probability that (x, y) satisfies $x+y \leq 2$.
(c) Find the probability that (x, y) satisfies $x \leq 1$ and $y \leq 1 / 2$.

