Problem Set #8 Due: Wednesday, Mar. 29

- **1.** Find the volume of an ice cream cone bounded by the hemisphere $z = \sqrt{8 x^2 y^2}$ and the cone $z = \sqrt{x^2 + y^2}$.
- **2.** Evaluate the following integral by converting to polar coordinates.
 - (a) $\int_0^2 \int_0^{\sqrt{4-y^2}} (x^2 + y^2)^{\frac{3}{2}} dx dy$ (b) $\int_{-1}^1 \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \sin(x^2 + y^2) dy dx$
- **3.** (a) For a > 0 find the volume under the graph of $z = e^{-(x^2+y^2)}$ above the disk $x^2 + y^2 \le a^2$.
 - **(b)** What happens to the volume as $a \to \infty$.
- **4.** Consider a thin plate that occupies the region *D* bounded by the parabola $y = 1 x^2$, x = 0 and y = 0 in the first quadrant with density function $\rho(x, y) = x$.
 - (a) Find the mass of the thin plate.
 - (b) Find the center of mass of the thin plate.
 - (c) Find moments of inertia I_x , I_y and I_0 .
- **5.** A joint density function is given by

$$f(x,y) = \begin{cases} kx^2 & \text{for } 0 \le x \le 2 \text{ and } 0 \le y \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find the value of the constant *k*.
- (b) Find the probability that (x, y) satisfies $x + y \le 2$.
- (c) Find the probability that (x, y) satisfies $x \le 1$ and $y \le 1/2$.