Solution to Problem Set \#8

1. (20 pt) Find the volume of an ice cream cone bounded by the hemisphere
$z=\sqrt{8-x^{2}-y^{2}}$ and the cone $z=\sqrt{x^{2}+y^{2}}$. The graphs above are the graphs of $z=\sqrt{8-x^{2}-y^{2}}, z=\sqrt{x^{2}+y^{2}}$ and their intersection.

Solution.

MATH 2850: page 1 of 4

The region is bounded above by the hemisphere $z=\sqrt{8-x^{2}-y^{2}}$ and below by the cone $z=\sqrt{x^{2}+y^{2}}$. We have $\sqrt{x^{2}+y^{2}} \leq z \leq \sqrt{8-x^{2}-y^{2}}$. Thus $x^{2}+y^{2} \leq z^{2} \leq 8-x^{2}-y^{2}$ and $x^{2}+y^{2} \leq 4$

In polar coordinates, this region $x^{2}+y^{2} \leq 4$ is $R=\{(r, \theta): 0 \leq r \leq$ $2,0 \leq \theta \leq 2 \pi\}$. Note that $\sqrt{8-x^{2}-y^{2}}=\sqrt{8-r^{2}}$ and $\sqrt{x^{2}+y^{2}}=\sqrt{r^{2}}=$ r.

Hence, we can compute the volume of the ice cream cone by finding the volume under the graph of $\sqrt{8-r^{2}}$ above the disk $R=\{(r, \theta): 0 \leq$ $r \leq 2,0 \leq \theta \leq 2 \pi\}$ and subtracting the volume under the graph of r above R. Therefore, we have

$$
\begin{aligned}
\text { Volume } & =\int_{0}^{2 \pi} \int_{0}^{2}\left(\sqrt{8-r^{2}}\right) r d r d \theta-\int_{0}^{2 \pi} \int_{0}^{2}(r) r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{2} r \sqrt{8-r^{2}}-r^{2} d r d \theta=\int_{0}^{2 \pi}\left[-\frac{1}{3}\left(8-r^{2}\right)^{3 / 2}-\frac{1}{3} r^{3}\right]_{0}^{2} d \theta \\
& =\frac{1}{3} \int_{0}^{2 \pi}\left(-4^{3 / 2}-8+8^{3 / 2}\right) d \theta=\frac{1}{3}(16 \sqrt{2}-16) \int_{0}^{2 \pi} d \theta \\
& =\frac{1}{3}(32 \pi)(\sqrt{2}-1) .
\end{aligned}
$$

2. Evaluate the following integral by converting to polar coordinates.
(a) (10 pt) $\int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}}\left(x^{2}+y^{2}\right)^{\frac{3}{2}} d x d y$
(b) (10 pt) $\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \sin \left(x^{2}+y^{2}\right) d y d x$

Solution. (a) The region of integration is $\left\{(x, y) 0 \leq x \leq \sqrt{4-y^{2}}, 0 \leq y \leq\right.$ $y 2\}$. The is the region in first quadrant. In polar coordinates, it is $R=\left\{(r, \theta): 0 \leq r \leq 2,0 \leq \theta \leq \frac{\pi}{2}\right\}$. We also have $\left(x^{2}+y^{2}\right)^{\frac{3}{2}}=\left(r^{2}\right)^{\frac{3}{2}}=r^{3}$ and
$\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \sin \left(x^{2}+y^{2}\right) d y d x=\int_{0}^{2 \pi} \int_{0}^{1} \sin \left(r^{2}\right) \cdot r d r d \theta$
$=\int_{0}^{2 \pi}-\frac{\cos \left(r^{2}\right)}{2} \left\lvert\, 0^{1} d \theta=\int_{0}^{2 \pi}\left(-\frac{\cos (1)}{2}+\frac{1}{2}\right) d \theta=\left(-\frac{\cos (1)}{2}+\frac{1}{2}\right) \cdot 2 \pi=-\cos (1)+1\right.$.
(b) The region of integration is $\left\{(x, y) \mid-\sqrt{1-x^{2}} \leq y \leq \sqrt{1-x^{2}},-1 \leq\right.$ $x \leq 1\}$. Note that $-\sqrt{1-x^{2}}=y$ and $\sqrt{1-x^{2}}=y$ imply $x^{2}+y^{2}=1$. Since $-1 \leq x \leq 1$, we know that R is the disk inside the unit circle.

In polar coordinates, it is $R=\{(r, \theta): 0 \leq r \leq 1,0 \leq \theta \leq 2 \pi\}$. We also have $x^{2}+y^{2}=r^{2}$ and
$\int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}}\left(x^{2}+y^{2}\right)^{\frac{3}{2}} d x d y=\int_{0}^{\frac{\pi}{2}} \int_{0}^{2} r^{3} \cdot r d r d \theta$
$==\int_{0}^{\frac{\pi}{2}} \int_{0}^{2} r^{4} d r d \theta=\left.\int_{0}^{\frac{\pi}{2}} \frac{r^{5}}{5}\right|_{0} ^{2} d \theta=\int_{0}^{\frac{\pi}{2}} \frac{32}{5} d \theta=\frac{32}{5} \cdot \frac{\pi}{2}=\frac{16 \pi}{5}$.
3. (a) (10 pt)For $a>0$ find the volume under the graph of $z=e^{-\left(x^{2}+y^{2}\right)}$ above the disk $x^{2}+y^{2} \leq a^{2}$.
(b) (10 pt)What happens to the volume as $a \rightarrow \infty$.

Solution. In polar coordinates, the disk is described by the inequalities $0 \leq r \leq a, 0 \leq \theta \leq 2 \pi$ and the function is $e^{-r^{2}}$. Hence, the volume under the graph and above the disk is
Volume $=\int_{0}^{a} \int_{0}^{2 \pi} e^{-r^{2}} r d r d \theta=2 \pi \int_{0}^{a} r e^{-r^{2}} d r=2 \pi\left[-\frac{1}{2} e^{-r^{2}}\right]_{0}^{a}=\pi\left(1-e^{-a^{2}}\right)$.
Since $\lim _{a \rightarrow \infty} \pi\left(1-e^{-a^{2}}\right)=\pi$, the volume under the graph of $e^{-x^{2}-y^{2}}$ above the entire $x y$-plane is π.
4. Consider a thin plate that occupies the region D bounded by the parabola $y=1-x^{2}, x=0$ and $y=0$ in the first quadrant with density function $\rho(x, y)=x$.
(a) (10 pt) Find the mass of the thin plate.
(b) (10 pt)Find the center of mass of the thin plate.
(c) $(10 \mathrm{pt})$ Find moments of inertia I_{x}, I_{y} and I_{0}.

Solution. (a) The graph $y=1-x^{2}$ intersect with $y=0$ at $1-x^{2}=0$, i.e. $x= \pm 1$. We also know that $y=1-x^{2} \geq 0$ when $-1 \leq x \leq 1$. The region of integration is $R=\left\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq 1-x^{2}\right.$.

The mass is $m=\iint_{R} \rho(x, y) d A=\int_{0}^{1} \int_{0}^{1-x^{2}} x d y d x=\left.\int_{0}^{1} \int_{0}^{1-x^{2}} x y\right|_{0} ^{1-x^{2}} d x=$ $\int_{0}^{1} x\left(1-x^{2}\right) d x=\int_{0}^{1}\left(x-x^{3}\right) d x=\left.\left(\frac{x^{2}}{2}-\frac{x^{4}}{4}\right)\right|_{0} ^{1}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}$.
(b) The center of mass $=\left(\frac{\iint_{R} \rho(x, y) x d A}{m}, \frac{\iint_{R} \rho(x, y) y d A}{m}\right.$.

Now $\iint_{R} \rho(x, y) x d A=\int_{0}^{1} \int_{0}^{1-x^{2}} x \cdot x d y d x=\left.\int_{0}^{1} \int_{0}^{1-x^{2}} x^{2} d y d x \int_{0}^{1} \int_{0}^{1-x^{2}} x^{2} y\right|_{0} ^{1-x^{2}} d x=$ $\int_{0}^{1} x^{2}\left(1-x^{2}\right) d x=\int_{0}^{1}\left(x^{2}-x^{4}\right) d x=\left.\left(\frac{x^{3}}{3}-\frac{x^{5}}{5}\right)\right|_{0} ^{1}=\frac{1}{3}-\frac{1}{5}=\frac{2}{15}$.
$\iint_{R} \rho(x, y) y d A=\left.\int_{0}^{1} \int_{0}^{1-x^{2}} x y d y d x \int_{0}^{1} \int_{0}^{1-x^{2}} x \frac{y^{2}}{2}\right|_{0} ^{1-x^{2}} d x=\int_{0}^{1} x \frac{\left(1-x^{2}\right)^{2}}{2} d x=$ $\int_{0}^{1} x \frac{\left(1-x^{2}\right)^{2}}{2} d x=\int_{0}^{1} x \frac{x^{4}-2 x^{2}+1}{2} d x=\int_{0}^{1} \frac{x^{5}-2 x^{3}+x}{2} d x=\left.\left(\frac{x^{6}}{12}-\frac{2 x^{4}}{8}+\frac{x^{2}}{4}\right)\right|_{0} ^{1}=\frac{1}{12}-$ $\frac{2}{8}+\frac{1}{4}=\frac{1}{12}$. So the center of mass is $\left(\frac{\frac{2}{15}}{\frac{1}{4}}, \frac{1}{\frac{1}{4}}\right)=\left(\frac{8}{15}, \frac{1}{3}\right)$.
(c) $I_{x}=\iint_{R} \rho(x, y) y^{2} d A=\left.\int_{0}^{1} \int_{0}^{1-x^{2}} x y^{2} d y d x \int_{0}^{1} \int_{0}^{1-x^{2}} x \frac{y^{3}}{3}\right|_{0} ^{1-x^{2}} d x=\int_{0}^{1} x \frac{\left(1-x^{2}\right)^{3}}{3} d x$. Let $u=1-x^{2}$. Then $d u=-2 x d x, x d x=-\frac{d u}{2}$ and $\int x \frac{\left(1-x^{2}\right)^{3}}{3} d x=$ $-\int \frac{(u)^{3}}{6} d u=-\frac{u^{4}}{24}=-\frac{\left(1-x^{2}\right)^{4}}{24}$.

$$
\text { So } I_{x}=-\left.\frac{\left(1-x^{2}\right)^{4}}{24}\right|_{0} ^{1}=\frac{1}{24} \text {. }
$$

$I_{y}=\iint_{R} \rho(x, y) x^{2} d A=\left.\int_{0}^{1} \int_{0}^{1-x^{2}} x x^{2} d y d x \int_{0}^{1} \int_{0}^{1-x^{2}} x^{3} y\right|_{0} ^{1-x^{2}} d x=\int_{0}^{1} x^{3}(1-$ $\left.x^{2}\right) d x=\int_{0}^{1}\left(x^{3}-x^{5}\right) d x=\frac{x^{4}}{4}-\left.\frac{x^{6}}{6}\right|_{0} ^{1}=\frac{1}{12}$.

Note that $I_{0}=\iint_{R} \rho(x, y)\left(x^{2}+y^{2}\right) d A=I_{x}+I_{y}=\frac{1}{20}+\frac{1}{24}=\frac{11}{120}$.

