Problem Set \#9

Due: Wednesday, Apr. 5

1. Find the area of the following surface.
(a) The part of the paraboloid $z=9-x^{2}-y^{2}$ that lies above the $x-y$ plane.

(b) The part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies above the plane $z=1$.

2. Evaluate the following triple integrals:
(a) $\iiint_{E} y z \sin \left(x^{5}\right) d V$ where
E is the region $\{(x, y, z) \mid 0 \leq x \leq 1,0 \leq y \leq x, x \leq z \leq 2 x\}$
(b) $\iiint_{E} z d V$ where E is the region bounded by $x=0, y=0, z=0$ and $2 x+y+2 z=4$.

3. A bead is made by drilling a cylindrical hole of radius 1 mm through a sphere of radius 9 mm Set up a triple integral in cylindrical coordinates representing the volume of the bead. Evaluate the integral. (Hint: Express the region $E=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 9\right.$ and $\left.x^{2}+y^{2} \leq 1\right\}$ in cylindrical coordinates and find $\iiint_{E} d V$.)

4. (a) A spherical cloud of gas of radius 3 km is more dense at the center than toward the edge. At a distance of $\rho \mathrm{km}$ from the center, the density is $\delta(\rho)=3-\rho$. Write an integral representing the total mass of the cloud of gas and evaluate it.
(b) A half-melon is approximated by the region between two concentric spheres, one a radius 1 and the other of radius 2 . Write a triple integral, including limits of integration, giving the volume of the half-melon. Evaluate the integral.
