Solution to Problem Set \#9

1. Find the area of the following surface.
(a) (15 pts) The part of the paraboloid $z=9-x^{2}-y^{2}$ that lies above the $x-y$ plane.

Solution. The part of the paraboloid $z=9-x^{2}-y^{2}$ that lies above the $x-y$ plane must satisfy $z=9-x^{2}-y^{2} \geq 0$. Thus $x^{2}+y^{2} \leq 9$. We have $z=f(x, y)=9-x^{2}-y^{2}, f_{x}=-2 x, f_{y}=-2 y$ and $\sqrt{1+f_{x}^{2}+f_{y}^{2}}=$ $\sqrt{1+(-2 x)^{2}+(-2 y)^{2}}=\sqrt{1+4 x^{2}+4 y^{2}}$.
The region $E=\left\{(x, y) \mid x^{2}+y^{2} \leq 9\right\}$ is $\{(r, \theta) \mid 0 \leq r \leq 3,0 \leq \theta \leq 2 \pi\}$ in polar coordinates. Hence the area of surface is
$\iint_{E} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d x d y=\int_{0}^{2 \pi} \int_{0}^{3} \sqrt{1+r^{2}} r d r d \theta=\left.\int_{0}^{2 \pi} \frac{1}{3}\left(1+r^{2}\right)^{\frac{3}{2}}\right|_{0} ^{3} d \theta=$ $\left(\frac{1}{3}(10)^{\frac{3}{2}}-\frac{1}{3}\right) \cdot 2 \pi=\frac{2 \pi}{3}\left((10)^{\frac{3}{2}}-1\right)$.
(b) (15 pts)The part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies above the plane $z=1$.

Solution. The sphere $x^{2}+y^{2}+z^{2}=4$ can be written as $z=\sqrt{4-x^{2}-y^{2}}$. The part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies above the plane $z=1$ must satisfy $1 \leq z=\sqrt{4-x^{2}-y^{2}}$. Thus $x^{2}+y^{2} \leq 3$. We have $z=f(x, y)=\sqrt{4-x^{2}-y^{2}}, f_{x}=\frac{-x}{\sqrt{4-x^{2}-y^{2}}}, f_{y}=\frac{-y}{\sqrt{4-x^{2}-y^{2}}}$ and

MATH 2850: page 1 of ??
$\sqrt{1+f_{x}^{2}+f_{y}^{2}}=\sqrt{1+\left(\frac{-x}{\sqrt{4-x^{2}-y^{2}}}\right)^{2}+\left(\frac{-y}{\sqrt{4-x^{2}-y^{2}}}\right)^{2}}=\sqrt{1+\frac{x^{2}}{4-x^{2}-y^{2}}+\frac{y^{2}}{4-x^{2}-y^{2}}}=$ $\sqrt{\frac{4-x^{2}-y^{2}+x^{2}+y^{2}}{4-x^{2}-y^{2}}} \sqrt{\frac{4}{4-x^{2}-y^{2}}}=2 \sqrt{\frac{1}{4-x^{2}-y^{2}}}$.
The region $E=\left\{(x, y) \mid x^{2}+y^{2} \leq 3\right\}$ is $\{(r, \theta) \mid 0 \leq r \leq \sqrt{3}, 0 \leq \theta \leq 2 \pi\}$ in polar coordinates. Hence the area of surface is
$\iint_{E} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d x d y=\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} 2 \sqrt{\frac{1}{4-r^{2}}} r d r d \theta=\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} 2\left(4-r^{2}\right)^{-\frac{1}{2}} r d r d \theta=$ $\int_{0}^{2 \pi}-\left.2\left(4-r^{2}\right)^{\frac{1}{2}}\right|_{0} ^{\sqrt{3}} d \theta=(-2+4) \cdot 2 \pi=4 \pi$.
2. Evaluate the following triple integrals:
(a) (15 pts) $\iiint_{E} y z \sin \left(x^{5}\right) d V$ where
E is the region $\{(x, y, z) \mid 0 \leq x \leq 1,0 \leq y \leq x, x \leq z \leq 2 x\}$
Solution. The region E bounded by the $x y, y z, x z$ planes and the plane $2 x+y+2 z=4$ is the set $\left\{(x, y, z) \in \mathbb{R}^{3}: 0 \leq x \leq 2,0 \leq y \leq\right.$ $\left.4-2 x, 0 \leq z \leq \frac{1}{2}(4-x-2 y)\right\}$.
$\iiint_{E} z d V=\int_{0}^{2} \int_{0}^{4-2 x} \int_{0}^{\frac{1}{2}(4-x-2 y)} z d z d y d x=\left.\int_{0}^{2} \int_{0}^{4-2 x} \frac{1}{2} z^{2}\right|_{0} ^{\frac{1}{2}(4-x-2 y)} d y d x$
$=\int_{0}^{2} \int_{0}^{4-2 x} \frac{1}{8}(4-x-2 y)^{2} d y d x=\int_{0}^{2}-\left.\frac{1}{48}(4-x-2 y)^{3}\right|_{0} ^{4-2 x} d x$ (by substitution $\mathbf{u}=4-\mathbf{x}-2 \mathrm{y}$)
$=\int_{0}^{2}-\frac{1}{48}(4-x-2(4-2 x))^{3}+\frac{1}{48}(4-x)^{3} d x=\int_{0}^{2}-\frac{1}{48}(-4+3 x)^{3}+\frac{1}{48}(4-x)^{3} d x$
$=-\frac{1}{48 \cdot 3 \cdot 4}(-4+3 x)^{4}-\left.\frac{1}{48 \cdot 4}(4-x)^{4}\right|_{0} ^{2}=-\frac{1}{48 \cdot 3 \cdot 4} 16-\frac{1}{48 \cdot 4} 16-\left(-\frac{1}{48 \cdot 3 \cdot 4} 256-\frac{1}{48 \cdot 4} 256\right)=-\frac{1}{36}-\frac{1}{12}+\frac{4}{9}+\frac{4}{3}=\frac{5}{3}$.
(b) (15 pts) $\iiint_{E} z d V$ where E is the region bounded by $x=0, y=0$, $z=0$ and $2 x+y+2 z=4$.

Solution. The region E bounded by the $x y, y z, x z$ planes and the plane $2 x+y+2 z=4$ is the set $\left\{(x, y, z) \in \mathbb{R}^{3}: 0 \leq x \leq 2,0 \leq y \leq\right.$ $\left.4-2 x, 0 \leq z \leq \frac{1}{2}(4-x-2 y)\right\}$.

$$
\begin{aligned}
& \iiint_{E} z d V=\int_{0}^{2} \int_{0}^{4-2 x} \int_{0}^{\frac{1}{2}(4-x-2 y)} z d z d y d x=\left.\int_{0}^{2} \int_{0}^{4-2 x} \frac{1}{2} z^{2}\right|_{0} ^{\frac{1}{2}(4-x-2 y)} d y d x \\
= & \int_{0}^{2} \int_{0}^{4-2 x} \frac{1}{8}(4-x-2 y)^{2} d y d x=\int_{0}^{2}-\left.\frac{1}{48}(4-x-2 y)^{3}\right|_{0} ^{4-2 x} d x(\text { by substitution u=4-x-2y) } \\
= & \int_{0}^{2}-\frac{1}{48}(4-x-2(4-2 x))^{3}+\frac{1}{48}(4-x)^{3} d x=\int_{0}^{2}-\frac{1}{48}(-4+3 x)^{3}+\frac{1}{48}(4-x)^{3} d x \\
= & -\frac{1}{48 \cdot 3 \cdot 4}(-4+3 x)^{4}-\left.\frac{1}{48 \cdot 4}(4-x)^{4}\right|_{0} ^{2}=-\frac{1}{48 \cdot 3 \cdot 4} 16-\frac{1}{48 \cdot 4} 16-\left(-\frac{1}{48 \cdot 3 \cdot 4} 256-\frac{1}{48 \cdot 4} 256\right) \\
& =-\frac{1}{36}-\frac{1}{12}+\frac{4}{9}+\frac{4}{3}=\frac{5}{3} .
\end{aligned}
$$

3. (10 pts)A bead is made by drilling a cylindrical hole of radius 1 mm through a sphere of radius 9 mm Set up a triple integral in cylindrical coordinates representing the volume of the bead. Evaluate the integral. (Hint: Express the region $E=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 9\right.$ and $x^{2}+y^{2} \geq$ $1\}$ (There is a typo in the original problem.) in cylindrical coordinates and find $\iiint_{E} d V$.)

Solution. In cylindrical coordinates, the sphere is given by the equation $r^{2}+z^{2}=9$ and the hole is given by $r=1$. Hence, the bead is described by the inequalities $-\sqrt{9-r^{2}} \leq z \leq \sqrt{9-r^{2}}, 0 \leq \theta \leq 2 \pi$ and $1 \leq r \leq 3$. We find the volume by integrating the constant density
function 1 over the sphere:

$$
\begin{aligned}
\text { Volume } & =\int_{R} 1 d V=\int_{1}^{3} \int_{0}^{2 \pi} \int_{-\sqrt{9-r^{2}}}^{\sqrt{9-r^{2}}} r d z d \theta d r=\int_{1}^{3} \int_{0}^{2 \pi}[r z]_{-\sqrt{9-r^{2}}}^{\sqrt{9-r^{2}}} d \theta d r \\
& =\int_{1}^{3} 2 r \sqrt{9-r^{2}} \int_{0}^{2 \pi} d \theta d r=2 \pi\left[-\frac{2}{3}\left(9-r^{2}\right)^{3 / 2}\right]_{1}^{3} \\
& =\frac{2}{3}(8)^{3 / 2} 2 \pi=\frac{4 \pi}{3} 8 \sqrt{8}=\frac{64 \pi}{3} \sqrt{2} \mathrm{~mm}^{3} .
\end{aligned}
$$

4. (a) (15 pts)A spherical cloud of gas of radius 3 km is more dense at the center than toward the edge. At a distance of $\rho \mathrm{km}$ from the center, the density is $\delta(\rho)=3-\rho$. Write an integral representing the total mass of the cloud of gas and evaluate it.
Solution. In spherical coordinates, the sphere is described by the inequalities $0 \leq \rho \leq 3,0 \leq \theta \leq 2 \pi$ and $0 \leq \phi \leq \pi$. Hence, the total mass of the cloud is

$$
\begin{aligned}
\text { Mass } & =\int_{W} \delta d V=\int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{3}(3-\rho) \rho^{2} \sin (\phi) d \rho d \theta d \phi \\
& =\left(\int_{0}^{2 \pi} d \theta\right)\left(\int_{0}^{\pi} \sin (\phi) d \phi\right)\left(\int_{0}^{3} 3 \rho^{2}-\rho^{3} d \rho\right) \\
& =(2 \pi)[-\cos (\phi)]_{0}^{\pi}\left[\rho^{3}-\frac{1}{3} \rho^{4}\right]_{0}^{3}=(2 \pi)(2)\left(27\left[1-\frac{3}{4}\right]\right)=27 \pi
\end{aligned}
$$

(b) (15 pts)A half-melon is approximated by the region between two concentric spheres, one a radius 1 and the other of radius 2 . Write a triple integral, including limits of integration, giving the volume of the half-melon. Evaluate the integral.
Solution. In spherical coordinates, the outer hemisphere is described by the inequalities $0 \leq \rho \leq b, 0 \leq \phi \leq \pi / 2$ and $0 \leq \theta \leq 2 \pi$ and the inner hemisphere is described by $0 \leq \rho \leq a, 0 \leq \phi \leq \pi / 2$ and $0 \leq \theta \leq 2 \pi$. Hence, the volume of the half-melon is

$$
\begin{aligned}
\text { Volume } & =\int_{W} 1 d V=\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{1}^{2} \rho^{2} \sin (\phi) d \rho d \phi d \theta \\
& =\left(\int_{0}^{2 \pi} d \theta\right)\left(\int_{0}^{\pi / 2} \sin (\phi) d \phi\right)\left(\int_{1}^{2} \rho^{2} d \rho\right) \\
& =(2 \pi)[-\cos (\phi)]_{0}^{\pi / 2}\left[\frac{1}{3} \rho^{3}\right]_{1}^{2}=\frac{2 \pi}{3}\left(2^{3}-1^{3}\right)=\frac{14 \pi}{3} .
\end{aligned}
$$

