1. Use Lagrange multipliers to find the maximum/minimum and maximizer/minimizer of \(f \) subject to the given constraint.

\[f(x, y) = xy, \quad x^2 + y^2 = 1 \]

Solution. Let \(f(x, y) = xy \) and \(g(x, y) = x^2 + y^2 \). The necessary conditions for the optimizer \((x, y)\) are

\[
\nabla f(x, y) = \lambda \nabla g(x, y)
\]

and the constraint equations \(x^2 + y^2 = 1 \) which are:

Since \(\nabla f(x, y) = (y, x) \) and \(\nabla g(x, y) = (2x, 2y) \), thus \((x, y)\) must satisfy

\[
\begin{align*}
 y &= 2\lambda x \quad (0.0.1) \\
 x &= 2\lambda y \quad (0.0.2) \\
 x^2 + y^2 &= 1 \quad (0.0.3)
\end{align*}
\]

From (1), (2), we get \(xy = \lambda x^2 \) \(xy = 2\lambda y^2 \). This gives \(2\lambda x^2 = 2\lambda y^2 \), \(2\lambda x^2 - 2\lambda y^2 = 2\lambda(x^2 - y^2) = 2\lambda(x - y)(x + y) = 0 \). So \(\lambda = 0 \) (impossible b/c this implies \(x = 0 \) and \(y = 0 \)) or \(y = x \) or \(y = -x \). Using \(x^2 + y^2 = 1 \) and \(y = \pm x \), we get \(2x^2 = 1 \) and \(x = \pm \frac{1}{\sqrt{2}} \). So \((x, y) = (\frac{1}{\sqrt{2}}, \frac{2}{\sqrt{2}}), (\frac{1}{\sqrt{2}}, -\frac{2}{\sqrt{2}}), (-\frac{1}{\sqrt{2}}, -\frac{2}{\sqrt{2}}) \) or \((\frac{1}{\sqrt{2}}, \frac{2}{\sqrt{2}})\).

Recall \(f(x, y) = xy \). \(f(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) = \frac{1}{2}, \enspace f(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}) = -\frac{1}{2}, \enspace f(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}) = -\frac{1}{2} \) and \(f(-\frac{1}{\sqrt{1}}, \frac{1}{\sqrt{1}}) = \frac{1}{2} \). Thus the maximum is \(\frac{1}{4} \), the minimum is \(-\frac{1}{2} \), the maximizers are \((\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), (-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})\), and the minimizers are \((\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}), (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})\).

\(\square \)

2. \[\int_0^1 \int_x^1 e^{y^2} dy dx. \]

Solution. Let \(D = \{(x, y)|0 \leq x \leq 1, x \leq y \leq 1\} \) Then \(0 \leq x \leq y \) and \(0 \leq x \leq y \leq 1 \) \(D \) is the same as \(\{(x, y)|0 \leq x \leq y, 0 \leq y \leq 1\} \).

We have \(\int_0^1 \int_x^1 e^{y^2} dy dx = \int_0^1 \int_0^y e^{y^2} dx dy = \int_0^1 \int_0^y xe^{y^2}|_0^y dx = \int_0^1 e^{y^2} y dx = \frac{e^{y^2}}{2} |_0^1 = \frac{e}{2} - \frac{1}{2} \).

\(\square \)