MATH 2850 Solution to Quiz #6

1. Use Lagrange multipliers to find the maximum/minimum and maximizer/minimizer of *f* subject to the given constraint. $f(x, y) = xy, x^2 + y^2 = 1$

Solution. Let f(x, y) = xy and $g(x, y) = x^2 + y^2$. The necessary conditions for the optimizer (x, y) are

 $\nabla f(x,y) = \lambda \nabla g(x,y)$ and the constraint equations $x^2 + y^2 = 1$ which are: Since $\nabla f(x,y) = (y,x)$ and $\nabla g(x,y) = (2x,2y)$, thus (x,y) must satisfy

- $(0.0.1) y = 2\lambda x$
- $(0.0.2) x = 2\lambda y$
- $(0.0.3) x^2 + y^2 = 1$

From (1), (2), we get $xy = \lambda x^2 \ xy = 2\lambda y^2$. This gives $2\lambda x^2 = 2\lambda y^2$, $2\lambda x^2 - 2\lambda y^2 = 2\lambda (x^2 - y^2) = 2\lambda (x - y)(x + y) = 0$. So $\lambda = 0$ (impossible b/c This implies x = 0 and y = 0) or y = x or y = -x. Using $x^2 + y^2 = 1$ and $y = \pm x$, we get $2x^2 = 1$ and $x = \pm \frac{1}{\sqrt{2}}$. So $(x, y) = (\frac{1}{\sqrt{2}}, \frac{2}{\sqrt{2}}), (\frac{1}{\sqrt{2}}, -\frac{2}{\sqrt{2}}), (-\frac{1}{\sqrt{2}}, -\frac{2}{\sqrt{2}})$ or $(-\frac{1}{\sqrt{2}}, \frac{2}{\sqrt{2}})$. Recall f(x, y) = xy. $f(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) = \frac{1}{2}$, $f(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}) = -\frac{1}{2}$, $f(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{1}}) = -\frac{1}{2}$ and $f(-\frac{1}{\sqrt{1}}, \frac{1}{\sqrt{1}}) = \frac{1}{2}$. Thus the maximum is $\frac{1}{4}$, the minimum is $-\frac{1}{2}$, the maximizers are $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), (-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$, and the minimizers are $(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}), (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{1}})$.

2. $\int_0^1 \int_x^1 e^{y^2} dy dx$.

Solution. Let $D = \{(x, y) | 0 \le x \le 1, x \le y \le 1\}$ Then $0 \le x \le y$ and $0 \le x \le y \le 1$. So D is the same as $\{(x, y) | 0 \le x \le y, 0 \le y \le 1\}$. We have $\int_0^1 \int_x^1 e^{y^2} dy dx = \int_0^1 \int_0^y e^{y^2} dx dy = \int_0^1 \int_0^y x e^{y^2} |_0^y dx = \int_0^1 e^{y^2} y dx = = \frac{e^{y^2}}{2} |_0^1 = \frac{e}{2} - \frac{1}{2}$.