MATH 2850 Solution to Quiz \#6

1. Use Lagrange multipliers to find the maximum/minimum and maximizer/minimizer of f subject to the given constraint.
$f(x, y)=x y, x^{2}+y^{2}=1$
Solution. Let $f(x, y)=x y$ and $g(x, y)=x^{2}+y^{2}$. The necessary conditions for the optimizer (x, y) are
$\nabla f(x, y)=\lambda \nabla g_{(}(x, y)$ and the constraint equations $x^{2}+y^{2}=1$ which are:
Since $\nabla f(x, y)=(y, x)$ and $\nabla g(x, y)=(2 x, 2 y)$, thus (x, y) must satisfy

$$
\begin{align*}
y & =2 \lambda x \tag{0.0.1}\\
x & =2 \lambda y \\
x^{2}+y^{2} & =1
\end{align*}
$$

From (1), (2), we get $x y=\lambda x^{2} x y=2 \lambda y^{2}$. This gives $2 \lambda x^{2}=2 \lambda y^{2}$, $2 \lambda x^{2}-2 \lambda y^{2}=2 \lambda\left(x^{2}-y^{2}\right)=2 \lambda(x-y)(x+y)=0$. So $\lambda=0$ (impossible b/c This implies $x=0$ and $y=0$) or $y=x$ or $y=-x$. Using $x^{2}+y^{2}=1$ and $y= \pm x$, we get $2 x^{2}=1$ and $x= \pm \frac{1}{\sqrt{2}}$. So $(x, y)=\left(\frac{1}{\sqrt{2}}, \frac{2}{\sqrt{2}}\right),\left(\frac{1}{\sqrt{2}},-\frac{2}{\sqrt{2}}\right)$, $\left(-\frac{1}{\sqrt{2}},-\frac{2}{\sqrt{2}}\right)$ or $\left(-\frac{1}{\sqrt{2}}, \frac{2}{\sqrt{2}}\right)$.
Recall $f(x, y)=x y . f\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=\frac{1}{2}, f\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)=-\frac{1}{2}, f\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{1}}\right)=-\frac{1}{2}$ and $f\left(-\frac{1}{\sqrt{1}}, \frac{1}{\sqrt{1}}\right)=\frac{1}{2}$. Thus the maximum is $\frac{1}{4}$, the minimum is $-\frac{1}{2}$, the maximizers are $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$, and the minimizers are $\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$, $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{1}}\right)$.
2. $\int_{0}^{1} \int_{x}^{1} e^{y^{2}} d y d x$.

Solution. Let $D=\{(x, y) \mid 0 \leq x \leq 1, x \leq y \leq 1\}$ Then $0 \leq x \leq y$ and $0 \leq x \leq y \leq 1$. So D is the same as $\{(x, y) \mid 0 \leq x \leq y, 0 \leq y \leq 1\}$.
We have $\int_{0}^{1} \int_{x}^{1} e^{y^{2}} d y d x=\int_{0}^{1} \int_{0}^{y} e^{y^{2}} d x d y=\left.\int_{0}^{1} \int_{0}^{y} x e^{y^{2}}\right|_{0} ^{y} d x=\int_{0}^{1} e^{y^{2}} y d x==$ $\left.\frac{e y^{2}}{2}\right|_{0} ^{1}=\frac{e}{2}-\frac{1}{2}$.

