MATH 2850 Solution to Quiz #8

1. $\int_{-3}^{0} \int_{-\sqrt{9-y^2}}^{0} \sqrt{x^2 + y^2} dx dy$

Solution. The region of integration is $\{(x,y) - \sqrt{9-y^2} \le x \le 0, -3 \le y \le 0\}$. Since $-\sqrt{9-y^2} \le x$, we have $x^2 + y^2 \le 9$. Using $x \le 0$ and $-3 \le y \le 0$, we conclude that this region is in third quadrant. In polar coordinates, it is $R = \{(r,\theta) : 0 \le r \le 3, \pi \le \theta \le \frac{3\pi}{2}\}$. We also have $\sqrt{x^2 + y^2} = (r^2)^{\frac{1}{2}} = r$ and $\int_{-3}^0 \int_{-\sqrt{9-y^2}}^0 \sqrt{x^2 + y^2} dx dy x = \int_{\pi}^{\frac{3\pi}{2}} \int_0^3 r \cdot r dr d\theta = \int_{\pi}^{\frac{3\pi}{2}} \int_0^3 \frac{r^3}{3} |_0^3 d\theta = \frac{9\pi}{2}\}$.

2.
$$\int_{R} e^{x^2 + y^2} dA$$
 where $R = \{(x, y) | x^2 + y^2 \le 4\}.$

Solution. In polar coordinates, the region R is described by the inequalities $0 \le r \le 2$, $0 \le \theta \le 2\pi$ and the function is e^{r^2} . Hence

$$\int_{R} e^{x^{2} + y^{2}} dA = \int_{0}^{2} \int_{0}^{2\pi} e^{r^{2}} r dr \, d\theta = 2\pi \int_{0}^{2} r e^{r^{2}} \, dr = 2\pi \left[\frac{1}{2} e^{r^{2}} \right]_{0}^{2} = \pi \left(e^{4} - 1 \right) \right).$$