MATH 2850 Solution to Quiz \#8

1. $\int_{-3}^{0} \int_{-\sqrt{9-y^{2}}}^{0} \sqrt{x^{2}+y^{2}} d x d y$

Solution. The region of integration is $\left\{(x, y)-\sqrt{9-y^{2}} \leq x \leq 0,-3 \leq\right.$ $y \leq 0\}$. Since $-\sqrt{9-y^{2}} \leq x$, we have $x^{2}+y^{2} \leq 9$. Using $x \leq 0$ and $-3 \leq y \leq 0$, we conclude that this region is in third quadrant. In polar coordinates, it is $R=\left\{(r, \theta): 0 \leq r \leq 3, \pi \leq \theta \leq \frac{3 \pi}{2}\right\}$. We also have $\sqrt{x^{2}+y^{2}}=\left(r^{2}\right)^{\frac{1}{2}}=r$ and
$\int_{-3}^{0} \int_{-\sqrt{9-y^{2}}}^{0} \sqrt{x^{2}+y^{2}} d x d y x=\int_{\pi}^{\frac{3 \pi}{2}} \int_{0}^{3} r \cdot r d r d \theta$
$=\left.\int_{\pi}^{\frac{3 \pi}{2}} \int_{0}^{3} \frac{r^{3}}{3}\right|_{0} ^{3} d \theta=\frac{9 \pi}{2}$.
2. $\int_{R} e^{x^{2}+y^{2}} d A$ where $R=\left\{(x, y) \mid x^{2}+y^{2} \leq 4\right\}$.

Solution. In polar coordinates, the region R is described by the inequalities $0 \leq r \leq 2,0 \leq \theta \leq 2 \pi$ and the function is $e^{r^{2}}$. Hence

$$
\left.\int_{R} e^{x^{2}+y^{2}} d A=\int_{0}^{2} \int_{0}^{2 \pi} e^{r^{2}} r d r d \theta=2 \pi \int_{0}^{2} r e^{r^{2}} d r=2 \pi\left[\frac{1}{2} e^{r^{2}}\right]_{0}^{2}=\pi\left(e^{4}-1\right)\right) .
$$

