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Background
Passive-blind Image Forensics

Digital images is pliable to manipulation.
[WSJ 89] 10% of color images published in US were altered.

Image forensic: to find out the condition of an image without
any prior information.
Two main functions of image forensics:

= Image Forgery Detection

= Image Source Identification
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Problem |

"n- - Image Forgery Detection

. Image forgery: Photomontage, images with removed
objects, retouched images, etc.

= Adobe Photoshop — 5 million registered users (2004)

= Photoshop altered images are common — 178,582
Images on www.worth1000.com (2005)

WWWW. wortthOO com (scandal Category)
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Problem 11
-"m-- Image Source ldentification

= ldentify image production devices: camera,
computer graphics, printer and scanner, etc.

= ldentify nature of the image scene: 2D photo or 3D
scene

= A face recognition system should not be fooled when
being shown a 2D face photo of someone.
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=-- What Is a Grayscale Image?

= A grid sampling of a 2-D function.
I:(xz,y) CR°—R

= The graph of an image is a submanifold in RS,
F:(z,y) C R? = (x,y,I(x,vy)) C R3
= We can use techniques in differential geometry to
study images!

View 1 of | View 2 of |




=-- What is a Color Image?

= A 2-D vector function.
I:(x,y) C R? (r,g,b) C R3

= The graph of an image function is a submanifold in
R>.
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CG Or Photo?

Part I:

Geometric Features for
Distinguishing Photographic Images
and Computer Graphics



Prior Work
"a-- Photo vs. CG

= [laneva et al. 03] Classifying photo and general CG (including
drawing and cartoon).

= For the purpose of improving video key-frame retrieval.

= [Lyu & Farid 05] Classifying photo and photorealistic CG.
= Using wavelet statistics.
= 67% detection rate (1% false alarm).

= provides little insight into the physical differences between
photo and CG.



“u-- Our Approach

= Analyze the physical differences between Photo and
CG, in terms of the image generative process.

= Propose a geometry-based image description
framework




=-- Image Generative Process

= Photographic Images

(3) Non-linear camera
response function

“ (1) Complex surface model - Not an arbitrary transform.
Light source - Subsurface scattering of /‘\?

human skin. | RS

- Human skin texture follows
biological system.

- Building surface formed by air
erosion.




What is Camera Response Function

Scene
radiance f ( . )

\\\ r(@,y) é(% y) = f(r(z,y))

Image ‘ ! ‘ Image
Iradiance t.l | TypicalCRF| | Intensity

tensity
AN

Camera sensor

Every model of camera has its unique CRF.



"s-- Image Generative Process

= Computer Graphics 3 Differences for Photo and CG
(1) Surface Model Difference.

(3) Acquisition Difference.

A\
\@c
7 (3) Non-standard Post-processing
Light sourc | B - Subjec_:t to the artist’s taste.
(1) Simplified surface model - May different from camera transform.

- Assume color independence.

 ' Post-processing

- Reduced mesh resolution for
computational efficiency.

- Without care, it introduces sharp
structures in rendered images.




»-- Feature Correspondences ~. -~
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Differential Geometry |
'w-- Image Gradient

= Non-linear camera transform has effects on image Gradient!
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‘u-- The Visual Effect of CRF Transform
Before CRF Transform After CRF Transform




Differential Geometry Il
"m.- Second Fundamental Form

= Polygonal Model leads to sharp structures

= At the junctures, the polygon is always sharper than the
smooth curve.

Curve Magnified View
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Differential Geometry Il
=-- Second Fundamental Form

= Locally, any surface can be written as a graph of a differentiable
function over the tangent plane.
= The local graph can be approximated by a quadratic function.
= The Hessian of the quadratic function is the second fundamental form.
= The Hessian can be characterized by 2 eigenvalues
= Large eigenvalues implies sharp structures
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Differential Geometry Il

‘w-- Surface Laplacian Vectors

"= Rendering of CG often assumes color independence in
the object surface model (generally, not true for real-
world object):

= We capture the difference in the RGB correlation for Photo
and CG using surface Laplacian vectors.

= The vectors measures the correlation between R, G and B.




Differential Geometry Il
-"w-- Surface Laplacian Vectors

Graph of a RGB color image
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Dataset
*'w-- Columbia Open Dataset

= First publicly available Photo/CG dataset.
o ConS|sts of 4 subsets 800 |mages for each subset.

From a few Personal  Google Internet  Recaptured

personal - Photo Photo CG CG

collections ‘

of photo

P " t Recaptured from
Downloaded from Downloaded from the 3 |L.CD screen by
Google Image Search 3D artist websites a Canon G3
camera

Available at http://www.ee.columbia.edu/trustfoto



-"w- - Feature Vector 2D Projection

= We compute the differential geometry quantities at
every point of an image.

= Then, we compute the moment of the quantities.
= Below are the 2D projection of the moments.

Gradient Second Fundamental _
Form Surface Laplacian




Experimental Results |
"m - - Support Vector Machine Classification

= SVM classification with radial basis function (RBF) kernel.

= Cartoon feature is the conventional feature for modeling the
general computer graphics (includes cartoon or drawing)

Features Geometry Wavelets Cartoon
Accuracy 83.5% 80.3% 71.0%
Receiver . Photo
operating = ° Vs
- c O .
characteristic - B Internet CG
(ROC) curve S o
o T
L - —— geometry
8 ----- wavelets

@ cartoon

False CG (false alarm)



Online Demo Il
-'w-- Consistency with Human Judgments

Human
Judgments g

CG

Photo

As one of the application scenarios, the cases with disagreement may be handed
to experts for further analysis.



=-- Open issues

= Distinguishing Photo and CG at the level of the local
region.
= Designing counter-measure for the Oracle attack.

= When the attackers have access to the detector, they can
modify an image until they obtains the desired output from
the detector!
= Capturing global scene authenticity (e.g., consistency
between lightings and shadows).



Canon
Powershot
G3

Canon
Rebel XT

Nikon D70

Part 1 1:

Camera Response Function Estimation
from a single-channel Image Using
Differential Invariants



Prior Work in Image Forgery Detection —
_m-- by Camera Authentic Characteristics

= What is Camera Response Function (CRF)?

= CRF can be used for:
= ldentifying the model of the camera for an image.

Scene = Detecting photomontage by identifying image fragments
radiance from different models of camera.
\\\ iz y) : — |R=zy) = fr(z,y)
| mage |:> : n;s ///,,,,m - |:> | mag e-
Irradiance .l | TypicalCRF| Intensity

Camera sensor




“u-- Our Approach

= Our work proposes a CRF estimation method for a
single image based on a set of differential invariants.

= Prior work uses either more than one image or the
entire RGB image (3-color channels) to recover the
CRF.

= We tested on a single-color-channel images!
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= -- Main Idea behind Our Approach

= 45 degree linear image irradiance

Legend:
r = image irradiance — unknown to users
R = image intensity — output of a camera



= -- Main Idea behind Our Approach

= squeezed linear image irradiance
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"u- - Main Idea behind Our Approach
" u stretched linear Image irradiance
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= scrambled linear image irradiance
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= -- Main Idea behind Our Approach

= Squeezed/stretch + scrambled linear image irradiance
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2 Main steps in Our Approach for
= - - estimating CRF

= 1) squeezing and stretching:

= Obtain a equivalence class for the action of squeezing and
stretching by a set of geometry invariants.

Linear Geometry Invariants

Reg — Ryy _ Rey _ _f'(f71(R))
TR T Raly - (FUIR)))?

HH

= 2) Descrambling

= Fit a parametric CRF curve to the computed geometry
Invariants. -




Legend:
r = image irradiance
R = image intensity

= - - FIrst-order Differential Invariants
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Rotational Symmetry for Linear
‘w-- Geometry Invariants

= For any Cartesian coordinate frame with basis s and q:
y

Rss Rqq Rsq f”(’l“)

g
N BT R TRRT GOR

With respect to the original x-y coordinate, the derivative operators is given by:

Ds = cos(@)q + sun(@)q



=-- WO Issues

= How do we know the locations where the image
iIrradiance is locally planar?
= Note: We do not have access to the image irradiance.

= How to compute derivatives on an image?
= Note: Digital images are discrete in space and magnitude.



me Locally Planar Point Selection

= Two properties of the transformed locally planar

points R = f(az 4+ by +c)
= Locally linear isophote.

= Symmetric on the sides of the gradient.
r(x.) Rz, y)

irzaar;—l—_by—l—c

=

- r

R = f(ax 4+ by + ¢)

RyyRZ

K =

Isophote _ 2RgyRzRy — Rxfog —

Curvature




“u-- Locally Planar Point Selection

= A natural constraint is obtained from the equality of
the linear geometry invariants:

‘Razx Ryy’ . ‘Razx R:cy ’ i ‘Ryfu Razy |

(4

ER% _Rny! | ‘Rf  RuRy

= To0 see that C(R) enforces the symmetry over the
gradient, let's consider C(R) in a gauge coordinate.
= Note: the rotational symmetry property also holds for C(R).



=-- A Gauge Coordinate

= Define axis u to be in the gradient direction.

g Line of symmetry 1
s=—(u—v
\ U, gradient direction \/5( )

\\ > q = %(u + v)

Rss _qu | | Fiss B Rsq | | qu Rsq
R2 R2| |R2 RsRq |R2 RsR,

When the derivatives on g and s direction are the same! j C’(R) =0

Note: C(R) only enforces the symmetry on gradient up to 2nd order derivatives.



‘u-- A Gauge Coordinate

= The gauge coordinate is also a coordinate frame for
reliable estimation of C(R) and the geometry
Invariants.

= Due to the singularity for geometry invariants in the v
(isophote) direction.

q
\ u, gradient direction
>/ va O

S —
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-"w. - EXamples of the Selected Points




"w- - Computing Derivatives on an Image

= Prior work in derivative kernel
= [Canny 83] Optimized for localization of image edge.

= [Haralick 84, Vieville et al. 92, Meer et al. 92] Unbiased or
polynomial preserving derivative kernel, meant for
computing differential quantities.

= [Koenderink 84] Gaussian scale-space derivative kernel.
= [Simoncelli et al. 94] Steerable directive kernel.

= [Farid et al. 04] Separable kernel optimized for directional
derivative.




“u-- Computing Derivatives on an Image

= To be robust to image noise, an image is often
convolved with a Gaussian kernel before computing
derivatives. What's wrong with that?

= Gaussian convolution systematically (biased) alters the shape

of an image. g(z,0) % 22 = 22 + o2

g(z,0) * 23 = 23 + 35°x

= [Vieville et al. 92, Meer et al. 92] With the property of
preserving polynomial and Gaussian noise, derivative
can be computed by fitting a polynomial function.

R R
R(z, y)—RO—I—Rxx—I—Ryy—I— “L 22 ny y°+Ryyzy+. .




‘u-- The Space for Curve Fitting

= After computing the linear invariant, we estimate the
CRF by curve fitting.

= The space for the linear geometry invariants is
difficult to handle — due to a singularity.
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- - Q Space

= We take advantage of the relationship between a
gamma curve and geometry invariants, we define

Q(R).
R:f(r)zrfy Q(R) = 1 _
- /! - ’y
r=f"1(R) = 1 — L f ()
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v = 0.2
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"a-- A New Parametric CRF Model

= Analytic CRF Model

= [Mann et al. 95] Gamma curve

= [Mitsunaga et al. 99] Polynomial model

= Empirical Model

= [Grossberg et al. 03] PCA model

A generalization of
the gamma curve
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Fitting Parametric Curve in Q-R
"‘w- - Space

= Our experiments are performed only on the linear
exponent CRF model.

= We can extend the higher-order CRF model.
= Problem: the parametric form is more complex.

= By fitting the Q(R) in the Q-R space, we can estimate
the parameters of the CRF curve.

() — 2.COTC1T
J(r)=r

1 _ (c1rIn(r) 4 c17 4 c0)?
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"u- - Algorithm

= 1) Select locally linear points.
= 2) Compute Q for the locally linear points.

= 3) Fit the parametric curve in Q-R space, with a
sequence of two-step iterations.
= Given (cO, cl), findr.
= Given r, find the optimal (cO, cl).

2
 (errgIn(rg) + c1rg + co)?
co — €17

J K
(cg,c1) =arg min_ > Y W(j,k)|Q;
(00701) j=0 k=0

where: W = weight — given by the 2D Q-R histogram



= - - EXperiments

= 3 models of camera
= Canon Powershot G3, Canon Rebel XT, Nikon D70

= 2 Sets of images acquired
= Natural or textured objects with irregular edges: Trees, plants, ...
= Man-made objects with straight edges: books, computers, ...

= Ground-truth CRF curves

= The average of the color checker results and the curve obtained
from multiple exposure method [Debevec et al. 97, Mitsunaga et al.
99].

= Verified with RAW image data.

= Evaluation Metric: Root Mean Square Error (RMSE)
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~"m-- IMmages
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‘s - - EXperiments and Observations

= Task
= Given a RGB color channel image, we estimate a curve for
each of the single-color channel images.
= The algorithm performs well on the man-made object
Image set with straight edges.
= Average RMSE = 0.028

= The estimation is unstable for natural object images
with irregular edges.
= Average RMSE = 0.060

Reference

;

RMSE Canon G3 vs. Canon rebel XT = 0.0146
RMSE Canon G3 vs. Nikon D70s = 0.0697



= - - EStimated Curve for R-channel

canon gd canon rebelxt

nikon d70

RMSE Canon G3 vs. Canon rebel XT = 0.0146
RMSE Canon G3 vs. Nikon D70s = 0.0697




-+ CRF from Motion Blur

= An interesting observation:

= the algorithm seems to perform well on motion blurred
Images, even though it is an image of a plant!
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‘w--Open Issues

= Can we improve the algorithm so that it can work
well on all/most types of image”?

= Can we extend the algorithm to the set of the higher-
order geometry invariants?
= Accurate estimation of the higher-order derivative is difficult.

= Can we apply machine learning to improve the
stability and robustness of the algorithm?

= Given the limitation, how the algorithm is useful for
passive-blind image forensics?



Thank you!

Dataset and Project Website: http://www.ee.columbia.edu/trustfoto
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