Geometric Methods in Passive-blind Image Forensics

Tian-Tsong Ng, Shih-Fu Chang, Jessie Hsu

Department of Electrical Engineering Columbia University, New York, USA

Mao-Pei Tsui

Department of Mathematics University of Toledo, Ohio, USA

Background

Passive-blind Image Forensics

- Digital images is pliable to manipulation.
- [WSJ 89] 10% of color images published in US were altered.
- Image forensic: to find out the condition of an image without any prior information.
- Two main functions of image forensics:
 - Image Forgery Detection
 - Image Source Identification

Image Forgery Hall of Fame

LA Times '03

Internet '04

Nat. Geo.

'92

Times '96

Problem I

- Image Forgery Detection
 - Image forgery: Photomontage, images with removed objects, retouched images, etc.
 - Adobe Photoshop 5 million registered users (2004)
 - Photoshop altered images are common 178,582 images on <u>www.worth1000.com</u> (2005)

www.worth1000.com (scandal category)

Problem II

Image Source Identification

- Identify image production devices: camera, computer graphics, printer and scanner, etc.
- Identify nature of the image scene: 2D photo or 3D scene
 - A face recognition system should not be fooled when being shown a 2D face photo of someone.

From which printer?

sponding to the connections bundle respectively:

 $R_{XY}Z = -\nabla_X\nabla$

What is a Grayscale Image?

- A grid sampling of a 2-D function. $I: (x, y) \subset R^2 \to R$
- The graph of an image is a submanifold in R³. $F: (x,y) \subset R^2 \rightarrow (x,y,I(x,y)) \subset R^3$
- We can use techniques in differential geometry to study images!

• What is a Color Image?

A 2-D vector function.

$$I:(x,y)\subset R^2\to (r,g,b)\subset R^3$$

 The graph of an image function is a submanifold in R⁵.

$$F: (x,y) \subset \mathbb{R}^2 \to (x,y,r(x,y),g(x,y),b(x,y)) \subset \mathbb{R}^5$$

Part I:

Geometric Features for Distinguishing Photographic Images and Computer Graphics

Prior Work Photo vs. CG

- [Ianeva et al. 03] Classifying photo and general CG (including drawing and cartoon).
 - For the purpose of improving video key-frame retrieval.
- [Lyu & Farid 05] Classifying photo and photorealistic CG.
 - Using wavelet statistics.
 - 67% detection rate (1% false alarm).
 - provides little insight into the physical differences between photo and CG.

Our Approach

- Analyze the physical differences between Photo and CG, in terms of the image generative process.
- Propose a geometry-based image description framework

Image Generative Process

Photographic Images

Light source

(1) Complex surface model

- Subsurface scattering of human skin.
- Color dependency.

- Not an arbitrary transform.

(2) Complex object geometry

- Human skin texture follows biological system.
- Building surface formed by air erosion.

Every model of camera has its unique CRF.

Image Generative Process

Computer Graphics

(1) Simplified surface model

Assume color independence.

Light source

3 Differences for Photo and CG
(1) Surface Model Difference.
(2) Object Model Difference.
(3) Acquisition Difference.

(3) Non-standard Post-processing

- Subject to the artist's taste.
- May different from camera transform.

(2) Polygonal object geometry

- Reduced mesh resolution for computational efficiency.
- Without care, it introduces sharp structures in rendered images.

Differential Geometry I

- Image Gradient
 - Non-linear camera transform has effects on image Gradient!

• The Visual Effect of CRF Transform

Before CRF Transform After CRF Transform

Differential Geometry II Second Fundamental Form

- Polygonal Model leads to sharp structures
 - At the junctures, the polygon is always sharper than the smooth curve.

A smooth curve is approximated by a polygon

Unusually sharp transition

Differential Geometry II

Second Fundamental Form

- Locally, any surface can be written as a graph of a differentiable function over the tangent plane.
- The local graph can be approximated by a quadratic function.
 - The Hessian of the quadratic function is the second fundamental form.
 - The Hessian can be characterized by 2 eigenvalues
 - Large eigenvalues implies sharp structures

Differential Geometry III

- Surface Laplacian Vectors
 - Rendering of CG often assumes color independence in the object surface model (generally, not true for realworld object):
 - We capture the difference in the RGB correlation for Photo and CG using surface Laplacian vectors.
 - The vectors measures the correlation between R, G and B.

Differential Geometry III Surface Laplacian Vectors

Graph of a RGB color image

$$F_{RGB}$$
: $(x,y) \subset R^2 \mapsto (x,y,I_R(x,y),I_G(x,y),I_B(x,y)) \subset R^5$

Surface Laplacian Vectors
$$\triangle_g I_i = \frac{1}{|g|} \left(\partial_x \left(\sqrt{|g|} \left(g^{xx} \partial_x I_i + g^{xy} \partial_y I_i \right) \right) \right) + \frac{1}{|g|} \left(\partial_y \left(\sqrt{|g|} \left(g^{yx} \partial_x I_i + g^{yy} \partial_y I_i \right) \right) \right)$$

where

$$g^{-1} = \begin{pmatrix} g^{xx} & g^{xy} \\ g^{yx} & g^{yy} \end{pmatrix} = \begin{pmatrix} 1 + \sum_{j} (\partial_x I_j)^2 & \sum_{j} \partial_x I_j \partial_y I_j \\ \sum_{j} \partial_y I_j \partial_x I_j & 1 + \sum_{j} (\partial_y I_j)^2 \end{pmatrix}^{-1}$$
$$|g| = 1 + \sum_{j} |\nabla I_j|^2 + \frac{1}{2} \sum_{j,k} |\nabla I_j \times \nabla I_k|^2, j, k = R, G, B$$

Dataset

Columbia Open Dataset

- First publicly available Photo/CG dataset.
- Consists of 4 subsets, 800 images for each subset.

Feature Vector 2D Projection

- We compute the differential geometry quantities at every point of an image.
- Then, we compute the moment of the quantities.
- Below are the 2D projection of the moments.

Gradient

Second Fundamental Form

Surface Laplacian

Experimental Results I

Support Vector Machine Classification

- SVM classification with radial basis function (RBF) kernel.
- Cartoon feature is the conventional feature for modeling the general computer graphics (includes cartoon or drawing)

Features	Geometry	Wavelets	Cartoon
Accuracy	83.5%	80.3%	71.0%

Online Demo III Consistency with Human Judgments Human Judgments CG Photo

As one of the application scenarios, the cases with disagreement may be handed to experts for further analysis.

Open issues

- Distinguishing Photo and CG at the level of the local region.
- Designing counter-measure for the Oracle attack.
 - When the attackers have access to the detector, they can modify an image until they obtains the desired output from the detector!
- Capturing global scene authenticity (e.g., consistency between lightings and shadows).

Camera Response Function Estimation from a single-channel Image Using Differential Invariants Prior Work in Image Forgery Detection – by Camera Authentic Characteristics

- What is Camera Response Function (CRF)?
- CRF can be used for:

Scene

radiance

- Identifying the model of the camera for an image.
- Detecting photomontage by identifying image fragments from different models of camera.

Our Approach

- Our work proposes a CRF estimation method for a single image based on a set of differential invariants.
- Prior work uses either more than one image or the entire RGB image (3-color channels) to recover the CRF.
- We tested on a single-color-channel images!

45 degree linear image irradiance

Legend:

r = image irradiance - unknown to usersR = image intensity - output of a camera

squeezed linear image irradiance

stretched linear image irradiance

scrambled linear image irradiance

Squeezed/stretch + scrambled linear image irradiance

2 Main steps in Our Approach for estimating CRF

- 1) squeezing and stretching:
 - Obtain a equivalence class for the action of squeezing and stretching by a set of geometry invariants.

Linear Geometry Invariants

$$\frac{R_{xx}}{R_x^2} = \frac{R_{yy}}{R_y^2} = \frac{R_{xy}}{R_x R_y} = \frac{f''(f^{-1}(R))}{(f'(f^{-1}(R)))^2}$$

- 2) Descrambling
 - Fit a parametric CRF curve to the computed geometry invariants.

Legend: r = image irradiance R = image intensity• First-order Differential Invariants $R = f(r), r = f^{-1}(R)$ Assume locally r = ax + by + cplanar image irradiance $R_x = f'(r)r_x, R_y = f'(r)r_y$ $(R_x, R_y) = f'(r)(r_x, r_y)$ $(R_{xx}, R_{xy}, R_{yy}) = f''(r)(r_x^2, r_x r_y, r_y^2)$ Depends on Depends the irradiance Linear on CRF geometry **Geometry Invariants** $\frac{R_{xx}}{R_x^2} = \frac{R_{yy}}{R_u^2} = \frac{R_{xy}}{R_x R_y} = \frac{f''(r)}{f'(r)^2} = \frac{f''(f^{-1}(R))}{(f'(f^{-1}(R)))^2}$ Independent of Geometry

Note: $\frac{R_{xxx}}{R_x^3}$ is also an invariant. The above involves the lowest order derivatives.

With respect to the original x-y coordinate, the derivative operators is given by:

$$D_{s} = \cos(\theta) \frac{\partial}{\partial x} + \sin(\theta) \frac{\partial}{\partial y}$$
$$D_{q} = -\sin(\theta) \frac{\partial}{\partial x} + \cos(\theta) \frac{\partial}{\partial y}$$
$$D_{ss} = D_{s}^{2}, D_{qq} = D_{q}^{2}, D_{sq} = D_{s}D_{q}$$

Two Issues

- How do we know the locations where the image irradiance is locally planar?
 - Note: We do not have access to the image irradiance.

- How to compute derivatives on an image?
 - Note: Digital images are discrete in space and magnitude.

Locally Planar Point Selection

- Two properties of the transformed locally planar points R = f(ax + by + c)
 - Locally linear isophote.
 - Symmetric on the sides of the gradient.

Locally Planar Point Selection

A natural constraint is obtained from the equality of the linear geometry invariants:

$$\frac{R_{xx}}{R_x^2} = \frac{R_{yy}}{R_y^2} = \frac{R_{xy}}{R_x R_y}$$

$$C(R) = \left| \frac{R_{xx}}{R_x^2} - \frac{R_{yy}}{R_y^2} \right| + \left| \frac{R_{xx}}{R_x^2} - \frac{R_{xy}}{R_x R_y} \right| + \left| \frac{R_{yy}}{R_y^2} - \frac{R_{xy}}{R_x R_y} \right|$$

- To see that C(R) enforces the symmetry over the gradient, let's consider C(R) in a gauge coordinate.
 - Note: the rotational symmetry property also holds for C(R).

A Gauge Coordinate

Define axis u to be in the gradient direction.

Note: C(R) only enforces the symmetry on gradient up to 2^{nd} order derivatives.

A Gauge Coordinate

- The gauge coordinate is also a coordinate frame for reliable estimation of C(R) and the geometry invariants.
 - Due to the singularity for geometry invariants in the v (isophote) direction.

 $\frac{R_{vv}}{R_v^2}$

Examples of the Selected Points

$C(R) = \left| \frac{R_{ss}}{R_s^2} - \frac{R_{qq}}{R_q^2} \right| + \left| \frac{R_{ss}}{R_s^2} - \frac{R_{sq}}{R_s R_q} \right| + \left| \frac{R_{qq}}{R_q^2} - \frac{R_{sq}}{R_s R_q} \right| < \epsilon$

Computing Derivatives on an Image

- Prior work in derivative kernel
 - [Canny 83] Optimized for localization of image edge.
 - [Haralick 84, Vieville et al. 92, Meer et al. 92] Unbiased or polynomial preserving derivative kernel, meant for computing differential quantities.
 - [Koenderink 84] Gaussian scale-space derivative kernel.
 - [Simoncelli et al. 94] Steerable directive kernel.
 - [Farid et al. 04] Separable kernel optimized for directional derivative.

Computing Derivatives on an Image

- To be robust to image noise, an image is often convolved with a Gaussian kernel before computing derivatives. What's wrong with that?
 - Gaussian convolution systematically (biased) alters the shape of an image. $g(x, \sigma) * x^2 = x^2 + \sigma^2$

$$g(x,\sigma) * x^3 = x^3 + 3\sigma^2 x$$

[Vieville et al. 92, Meer et al. 92] With the property of preserving polynomial and Gaussian noise, derivative can be computed by fitting a polynomial function.

$$R(x,y) = R_o + R_x x + R_y y + \frac{R_{xx}}{2} x^2 + \frac{R_{yy}}{2} y^2 + R_{xy} x y + \dots$$

The Space for Curve Fitting

- After computing the linear invariant, we estimate the CRF by curve fitting.
- The space for the linear geometry invariants is difficult to handle – due to a singularity.

$$f(r) = r^{\gamma}$$
$$\gamma = 0.2$$

$$\frac{f''(r)}{f'(r)^2} = \frac{\gamma - 1}{\gamma} R^{-1}$$

1

Q space

 We take advantage of the relationship between a gamma curve and geometry invariants, we define Q(R).

A New Parametric CRF Model

- Analytic CRF Model
 - [Mann et al. 95] Gamma curve
 - [Mitsunaga et al. 99] Polynomial model
- Empirical Model
 - [Grossberg et al. 03] PCA model

$$f(r) = r \sum_{i=0}^{n} c_i r^i$$

A generalization of the gamma curve

	Number of model parameters			
Model	1	2	З	4
polynomial exponent	5.18	2.34	1.16	0.60
EMOR	4.00	1.73	0.63	0.25
polynomial	7.37	3.29	1.71	1.06

Fitting Parametric Curve in Q-R Space

- Our experiments are performed only on the linear exponent CRF model.
- We can extend the higher-order CRF model.
 - Problem: the parametric form is more complex.
- By fitting the Q(R) in the Q-R space, we can estimate the parameters of the CRF curve.

$$f(r) = r^{c_0 + c_1 r}$$

$$Q(R) = \frac{1}{1 - \frac{f''(r)}{f'(r)^2} f(r)} = \frac{(c_1 r \ln(r) + c_1 r + c_0)^2}{c_0 - c_1 r}$$

Algorithm

- 1) Select locally linear points.
- 2) Compute Q for the locally linear points.
- 3) Fit the parametric curve in Q-R space, with a sequence of two-step iterations.
 - Given (c0, c1), find r.
 - Given r, find the optimal (c0, c1).

$$(c_0^*, c_1^*) = \arg\min_{(c_0, c_1)} \sum_{j=0}^{J} \sum_{k=0}^{K} W(j, k) \left| Q_j - \frac{(c_1 r_k \ln(r_k) + c_1 r_k + c_0)^2}{c_0 - c_1 r_k} \right|^2$$

where: W = weight – given by the 2D Q-R histogram

Experiments

- 3 models of camera
 - Canon Powershot G3, Canon Rebel XT, Nikon D70
- 2 Sets of images acquired
 - Natural or textured objects with irregular edges: Trees, plants, ...
 - Man-made objects with straight edges: books, computers, ...
- Ground-truth CRF curves
 - The average of the color checker results and the curve obtained from multiple exposure method [Debevec et al. 97, Mitsunaga et al. 99].
 - Verified with RAW image data.
- Evaluation Metric: Root Mean Square Error (RMSE)

$$\sqrt{\frac{1}{N}\sum_{i=1}^{N}(f(r_i) - f_o(r_i))^2}$$

Textured or natural objects with irregular edges

Man-made objects with straight edges

Experiments and Observations

- Task
 - Given a RGB color channel image, we estimate a curve for each of the single-color channel images.
- The algorithm performs well on the man-made object image set with straight edges.
 - Average RMSE = 0.028
- The estimation is unstable for natural object images with irregular edges.
 - Average RMSE = 0.060

Reference

RMSE Canon G3 vs. Canon rebel XT = 0.0146RMSE Canon G3 vs. Nikon D70s = 0.0697

Estimated Curve for R-channel

RMSE Canon G3 vs. Canon rebel XT = 0.0146 RMSE Canon G3 vs. Nikon D70s = 0.0697

CRF from Motion Blur

- An interesting observation:
 - the algorithm seems to perform well on motion blurred images, even though it is an image of a plant!

Open Issues

- Can we improve the algorithm so that it can work well on all/most types of image?
- Can we extend the algorithm to the set of the higherorder geometry invariants?
 - Accurate estimation of the higher-order derivative is difficult.
- Can we apply machine learning to improve the stability and robustness of the algorithm?
- Given the limitation, how the algorithm is useful for passive-blind image forensics?

Thank you!

Dataset and Project Website: http://www.ee.columbia.edu/trustfoto