The following results will be given in the final exam.
(1) The substitution $v=y^{1-n}$ transforms the Bernoulli equation $\frac{d y}{d x}+P(x) y=Q(x) y^{n}$ into the linear equation $\frac{d v}{d x}+(1-n) P(x) v=(1-n) Q(x)$.
(2) The solution of the first order equation $y^{\prime}(t)+p(t) y(t)=q(t)$ can be written as $\left(e^{\int p(t) d t} y\right)^{\prime}=e^{\int p(t)} q(t)$.
(3) The equation $M(x, y) d x+N(x, y) d y=0$ is exact if $\frac{\partial M(x, y)}{\partial y}=\frac{\partial N(x, y)}{\partial x}$.
(4) (The reduction of order) Suppose that $y_{1}(t)$ and $y_{2}(t)$ are solutions of the equation $y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0$.
Then $\left(\frac{y_{2}}{y_{1}}\right)^{\prime}=\frac{C e^{-\int p(t) d t}}{y_{1}^{2}}$.
(5) (variation of parameter) Suppose $y_{1}(t)$ and $y_{2}(t)$ are independent solutions of $y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0$. Then a particular solution to $y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=g(t)$ is given by $y_{p}(t)=-y_{1}(t) \int \frac{y_{2}(t) g(t)}{W(t)} d t+y_{2}(t) \int \frac{y_{1}(t) g(t)}{W(t)} d t$
where $W(t)=W\left(y_{1}, y_{2}\right)(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t)$ is the Wronskian of $y_{1}$ and $y_{2}$.
(6) $(D-r)^{k}\left(t^{l} e^{r t}\right)=0$ if $k>l$.
(7) $\left((D-a)^{2}+b^{2}\right)^{k}\left(t^{l} e^{a t} \cos (b t)\right)=0$ and $\left((D-a)^{2}+b^{2}\right)^{k}\left(t^{l} e^{a t} \sin (b t)\right)=$ 0 if $k>l$.
(8) $L\left(e^{a t}\right)=\frac{1}{s-a}, L(1)=\frac{1}{s}, L\left(t^{n}\right)=\frac{n!}{s^{n+1}}, L\left(t^{n} e^{a t}\right)=\frac{n!}{(s-a)^{n+1}}$,
$L\left(e^{a t} \sin (b t)\right)=\frac{b}{(s-a)^{2}+b^{2}}, L\left(e^{a t} \cos (b t)\right)=\frac{(s-a)}{(s-a)^{2}+b^{2}}$,
$L\left(u_{c}(t)\right)=\frac{e^{-c s}}{s}, L(\delta(t-c))=e^{-c s}, L\left(u_{c}(t) f(t-c)\right)=e^{-c s} L(f(t))$, $L^{-1}\left(e^{-c s} F(s)\right)=u_{c}(t) f(t-c)$ where $f(t)=L^{-1}(F(s))$, $L\left(y^{(n)}(t)\right)=s^{n} L(y(t))-s^{n-1} y(0)-\cdots-y^{(n-1)}(0)$. $L\left(\int_{0}^{t} f(t-\tau) g(\tau) d \tau\right)=L(f(t)) L(g(t))$. $u_{c}(t)= \begin{cases}0, & 0 \leq t<c, \\ 1, & c \leq t .\end{cases}$ $u_{a, b}(t)=u_{a}(t)-u_{b}(t)=\left\{\begin{array}{l}0, \quad 0 \leq t<a, \\ 1, a \leq t<b, \\ 0, b \leq t .\end{array}\right.$
(9) Suppose $A$ is a $2 \times 2$ matrix with repeated eigenvalue $\lambda$ and only one eigenvector $\vec{v}$. Then the general solution of $x^{\prime}=A x$ is
$x(t)=c_{1} e^{\lambda t} \vec{v}+c_{2}\left(t e^{\lambda t} \vec{v}+e^{\lambda t} \vec{w}\right)$ where $\vec{w}$ satisfies the equation $(A-\lambda I) \vec{w}=\vec{v}$.
(10) A linear system is asymptotically stable if all the solutions converge, a linear system is stable if all the solutions remain bounded but do not converge and a linear system is unstable if some solutions diverge to infinity.

