Review Problems for Midterm I

Figure 1. Slope fields of $\frac{d y}{d x}=(x-y+1)(1+\sin (x y))+1$

Figure 2. Slope fields of $\frac{d y}{d x}=\left(2 y-y^{2}\right)\left(1+x^{2} y^{2}\right)$

The information about the first midterm can be found at http://www.math.utoledo.edu/~mtsui/de05f/exam/midterm1.html
(1) The slope field of the indicated differential equation is given in below. Describe the behavior of the solution.
(a) $\frac{d y}{d x}=(x-y+1)(1+\sin (x y))+1$.
(b) $\frac{d y}{d x}=\left(2 y-y^{2}\right)\left(1+x^{2} y^{2}\right)$.
(2) (a) Show that the substitution $v=a x+b y+c$ transforms the differential equation $\frac{d y}{d x}=F(a x+b y+c)$ into a separable equation.
(b) Use the idea above to solve the equation $\frac{d y}{d x}=(x+y+1)^{2}$.
(3) (a) Show that the substitution $v=\frac{y}{x}$ transforms the differential equation $\frac{d y}{d x}=F\left(\frac{y}{x}\right)$ into a separable equation.

```
                                    page 1 of 3
```


Figure 3. $y^{3}-3 y^{2}=x^{2}-2$
(b) Use the idea above to solve the equation $x^{2} \frac{d y}{d x}=y^{2}+x y-x^{2}$.
(c) Show that $y=m x$ is a solution of $\frac{d y}{d x}=F\left(\frac{y}{x}\right)$ if $m=F(m)$.
(4) (a) Solve the initial value problem

$$
y^{\prime}=\frac{2 x}{3 y^{2}-6 y}, y(0)=1
$$

and determine the interval where the solution is valid.
(b) Solve the initial value problem

$$
y^{\prime}=\frac{2 x}{3 y^{2}-6 y}, y(\sqrt{18})=4
$$

and determine the interval where the solution is valid.
(5) Solve the following equations.
(a) $\frac{d y}{d t}+3 y=2 t+1$. Can you say anything about $\lim _{t \rightarrow \infty} y(t) ?$
(b) $\frac{d y}{d t}-y=\cos (t)$ with $y(0)=y_{0}$. Find the value of y_{0} for which the solution remains finite as $t \rightarrow \infty$.
(c) $\frac{d y}{d t}-3 y=-e^{-t}$ with $y(0)=y_{0}$. Find the value of y_{0} for which the solution goes to $-\infty$ as $t \rightarrow \infty$.
(d) $\left(t^{2}+1\right) \frac{d y}{d t}+3 t y=6 t$. Can you say anything about $\lim _{t \rightarrow \infty} y(t)$?
(e) $t^{3}+3 y-t \frac{d y}{d t}=0$.
(f) $y+t \frac{d y}{d t}=2 e^{t}$.
(g) $(2 t+1) \frac{d y}{d t}+y=(2 t+1)^{\frac{3}{2}}$.
(h) $t \frac{d y}{d t}=6 y+12 t^{4} y^{\frac{2}{3}}$. (Bernoulli equation).
(i) $4 x^{2} y^{2}+\frac{d y}{d x}=5 x^{4} y^{2}$.
(j) $6 x y+2 y^{2}+\left(9 x^{2}+8 x y+y\right) \frac{d y}{d x}=0$.
(k) $e^{y}+y \cos (x)+\left(x e^{y}+\sin (x)+e^{y}\right) \frac{d y}{d x}=0$.
(l) $\frac{d y}{d x}=(x+y) 2-1$.
(m) $2 x^{2} y-x^{3} \frac{d y}{d x}=y^{3}$.
(n) $\frac{d y}{d x}=1+x^{2}+y^{2}+x^{2} y^{2}$.
(6) Show that the solution to $\frac{d y}{d t}=y^{4}$ with $y(0)=y_{0}>0$ escape to ∞ in a finite time.
(7) Without solving the problem, explain why the solution to $\frac{d y}{d t}=\frac{y \sin (t)}{1+t^{2}+y^{2}}$ with $y(0)=$ -2 is always negative.
(8) Without solving the problem, determine the interval of existence of the following equation.
(a) $\left(9-t^{2}\right) \frac{d y}{d t}+\frac{y}{t}=\cos (t), y(-1)=2$.
(b) $\left(9-t^{2}\right) \frac{d y}{d t}+\frac{y}{t}=\cos (t), y(1)=2$.
(c) $\left(9-t^{2}\right) \frac{d y}{d t}+\frac{y}{t}=\cos (t), y(4)=2$.
(d) $\left(9-t^{2}\right) \frac{d y}{d t}+\frac{y}{t}=\cos (t), y(-4)=2$.
(9) In each problem, determine the equilibrium points, and classify each one as asymptotically stable, unstable, or semistable.
(a) $\frac{d y}{d t}=y^{2} \sin ^{2}(y)$
(b) $\frac{d y}{d t}=y \sin (y)$
(c) $\frac{d y}{d t}=\left(-y^{3}+3 y^{2}-2 y\right)(y-3)^{2}$
(d) $\frac{d y}{d t}=y^{3}-3 y^{2}+2 y$
(10) Describe the behavior of the solution to the following differential equation
(a) $\frac{d y}{d t}=\frac{y^{2}(y-2)}{y-1}$
(b) $\frac{d y}{d t}=\frac{\left(y^{2}-4\right)}{y-1}$
(11) Without solving the differential equation, sketch the graph of the solution to $\frac{d y}{d t}=4 y-y^{2}$ with the following initial conditions. Also indicate the concavity of the solution.
(a) $y(0)=8$
(b) $y(0)=3$
(c) $y(0)=1$
(d) $y(0)=-1$

