Review Problems for Midterm I

FIGURE 1. Slope fields of $\frac{dy}{dx} = (x - y + 1)(1 + \sin(xy)) + 1$

FIGURE 2. Slope fields of $\frac{dy}{dx} = (2y - y^2)(1 + x^2y^2)$

The information about the first midterm can be found at http://www.math.utoledo.edu/~mtsui/de05f/exam/midterm1.html

- (1) The slope field of the indicated differential equation is given in below. Describe the behavior of the solution.
- (a) $\frac{dy}{dx} = (x y + 1)(1 + \sin(xy)) + 1.$ (b) $\frac{dy}{dx} = (2y y^2)(1 + x^2y^2).$ (2) (a) Show that the substitution v = ax + by + c transforms the differential equation $\frac{dy}{dx} = F(ax + by + c)$ into a separable equation.
 - (b) Use the idea above to solve the equation $\frac{dy}{dx} = (x + y + 1)^2$.
- (3) (a) Show that the substitution $v = \frac{y}{x}$ transforms the differential equation $\frac{dy}{dx} = F(\frac{y}{x})$ into a separable equation.

page 1 of 3

FIGURE 3. $y^3 - 3y^2 = x^2 - 2$

- (b) Use the idea above to solve the equation $x^2 \frac{dy}{dx} = y^2 + xy x^2$. (c) Show that y = mx is a solution of $\frac{dy}{dx} = F(\frac{y}{x})$ if m = F(m).
- (4) (a) Solve the initial value problem

$$y' = \frac{2x}{3y^2 - 6y}, \ y(0) = 1$$

and determine the interval where the solution is valid.

(b) Solve the initial value problem

$$y' = \frac{2x}{3y^2 - 6y}, \ y(\sqrt{18}) = 4$$

and determine the interval where the solution is valid.

- (5) Solve the following equations.

 - (a) $\frac{dy}{dt} + 3y = 2t + 1$. Can you say anything about $\lim_{t\to\infty} y(t)$? (b) $\frac{dy}{dt} y = \cos(t)$ with $y(0) = y_0$. Find the value of y_0 for which the solution remains finite as $t \to \infty$.
 - (c) $\frac{dy}{dt} 3y = -e^{-t}$ with $y(0) = y_0$. Find the value of y_0 for which the solution goes to $-\infty$ as $t \to \infty$..
 - (d) $(t^2+1)\frac{dy}{dt}+3ty=6t$. Can you say anything about $\lim_{t\to\infty}y(t)$?
 - (e) $t^3 + 3y t\frac{dy}{dt} = 0$.
 - $(f) y + t \frac{dy}{dt} = 2e^t.$
 - (g) $(2t+1)\frac{dy}{dt} + y = (2t+1)^{\frac{3}{2}}$.

 - (h) $t\frac{dy}{dt} = 6y + 12t^4y^{\frac{2}{3}}$. (Bernoulli equation). (i) $4x^2y^2 + \frac{dy}{dx} = 5x^4y^2$. (j) $6xy + 2y^2 + (9x^2 + 8xy + y)\frac{dy}{dx} = 0$. (k) $e^y + y\cos(x) + (xe^y + \sin(x) + e^y)\frac{dy}{dx} = 0$. (l) $\frac{dy}{dx} = (x + y)2 1$.

- (m) $2x^2y x^3 \frac{dy}{dx} = y^3$. (n) $\frac{dy}{dx} = 1 + x^2 + y^2 + x^2y^2$.
- (6) Show that the solution to $\frac{dy}{dt} = y^4$ with $y(0) = y_0 > 0$ escape to ∞ in a finite time.
- (7) Without solving the problem, explain why the solution to $\frac{dy}{dt} = \frac{y \sin(t)}{1 + t^2 + u^2}$ with $y(0) = \frac{1}{2} \sin(t)$ -2 is always negative.
- (8) Without solving the problem, determine the interval of existence of the following equation.

 - (a) $(9 t^2) \frac{dy}{dt} + \frac{y}{t} = \cos(t), y(-1) = 2.$ (b) $(9 t^2) \frac{dy}{dt} + \frac{y}{t} = \cos(t), y(1) = 2.$ (c) $(9 t^2) \frac{dy}{dt} + \frac{y}{t} = \cos(t), y(4) = 2.$ (d) $(9 t^2) \frac{dy}{dt} + \frac{y}{t} = \cos(t), y(-4) = 2.$
- (9) In each problem, determine the equilibrium points, and classify each one as asymptotically stable, unstable, or semistable.

 - (a) $\frac{dy}{dt} = y^2 \sin^2(y)$ (b) $\frac{dy}{dt} = y \sin(y)$ (c) $\frac{dy}{dt} = (-y^3 + 3y^2 2y)(y 3)^2$ (d) $\frac{dy}{dt} = y^3 3y^2 + 2y$
- (10) Describe the behavior of the solution to the following differential equation

 - (a) $\frac{dy}{dt} = \frac{y^2(y-2)}{y-1}$ (b) $\frac{dy}{dt} = \frac{(y^2-4)}{y-1}$
- (11) Without solving the differential equation, sketch the graph of the solution to $\frac{dy}{dt} = 4y - y^2$ with the following initial conditions. Also indicate the concavity of the solution.
 - (a) y(0) = 8
 - (b) y(0) = 3
 - (c) y(0) = 1
 - (d) y(0) = -1