
Solution to Review Problems for Midterm I
MATH 3860 – 001

Disclaimer: My solution is only correct up to a constant.

Please email(Mao-Pei.Tsui@math.utoledo.edu) me if you find any mistake.

You can skip problems 5j and 5k. They are from section 2.6 which is not a topic

for this midterm.

(1) (a) From the slope field, it seems that all solutions converge to y = x + 1. One can

also check easily that y = x+1 is a solution of dy
dx

= (x− y +1)(1+ sin(xy))+1.

(b) One can check easily that y = 0 and y = 2 are solutions to dy
dx

= (2y − y2)(1 +

x2y2). Suppose y(0) > 2 or 0 < y(0) < 2, we have limx→∞ y(x) = 2. Suppose

y(0) < 0, we have y(x) → −∞.

(2) (a) Let v = ax + by + c. Since dv
dx

= a + b dy
dx

and dy
dx

= F (ax + by + c), we have
dv
dx

= a + bF (ax + by + c) = a + bF (v). Thus
∫

dv
a+bF (v)

=
∫

dx.

(b) Let v = x + y + 1. Since dv
dx

= 1 + dy
dx

and dy
dx

= (x + y + 1)2 = v2, we have
dv
dx

= 1 + v2. Thus
∫

dv
1+v2 =

∫
dx, arctan(v) = x + c and v = tan(x + c). Recall

that v = x + y + 1, we have y = v − x− 1 = tan(x + c)− x− 1.

(3) (a) Let v = y
x
, i.e. y = xv. Using dy

dx
= v + x dv

dx
and dy

dx
= F ( y

x
) = F (v), we have

v + x dv
dx

= F (v). It can be rewritten as x dv
dx

= F (v)− v which can be solved by∫
dv

F (v)−v
=

∫
dx
x

.

(b) The equation x2 dy
dx

= y2+xy−x2 can be simplified as dy
dx

= y2+xy−x2

x2 = ( y
x
)2+ y

x
−1.

Let v = y
x
. Note that ( y

x
)2 + y

x
−1 = v2 +v−1. Following the same computation

as above, we have x dv
dx

= v2 − 1. It can be solved by
∫

dv
v2−1

=
∫

dx
x

. Note that∫
dv

v2−1
=

∫
1

2(v−1)
− 1

2(v+1)
dv = 1

2
ln |v−1

v+1
| + D. Hence 1

2
ln |v−1

v+1
| = ln |x| + C and

ln |v−1
v+1

| = 2 ln |x| + c = ln |x|2 + c. Therefore v−1
v+1

= Cx2 and v = 1+Cx2

1−Cx2 . Recall

that v = y
x
. It follows that y = xv = x · 1+Cx2

1−Cx2 .

(4) (a) Separate the equation, we have
∫

(3y2 − 6y)dy =
∫

2xdx and y3 − 3y2 = x2 + C.

Plugging y(0) = 1, we have C = −2 Thus the solution (x, y) satisfies y3− 3y2 =

x2−2. From the equation y′ = 2x
3y2−6y

, we know that the solution y will not exist

if 3y2−6y = 3y(y−2) = 0, that is y = 0 and y = 2. If y = 0, we have 0 = x2−2,

i.e. x = ±
√

2. From the graph in Figure 3, we know that the solution exists on

the interval −
√

2 < x <
√

2.

(b) Using y3 − 3y2 = x2 + C and y(
√

18) = 4, we have 64 − 48 = 18 + C and

C = −2. So the solution (x, y) satisfies y3 − 3y2 = x2 − 2. From the graph of

y3−3y2 = x2−2, we know that the solution exists on the interval −∞ < x < ∞.

(5) Solve the following equations.

(a) y(t) = 2t
3

+ 1
9

+ Ce−3t.Thus limt→∞ y(t)− 2t
3
− 1

9
= 0.

page 1 of 4



MAT MATH 3860– 001 ODE Review: page 2 of 4

(b) y(t) = −1
2
cos(t)+ 1

2
sin(t)+(y0 + 1

2
)et If y0 = −1

2
then the solution remains finite

as t →∞. We have used the fact that limt→∞ e3t = ∞.

(c) y(t) = 1
4
e−t + (y0 − 1

4
)e3t. Note that limt→∞ e3t = ∞ and limt→∞ e−t = 0. The

condition y0 < 1
4

will imply that limt→∞ y(t) = −∞.

(d) y(t) = 2 + C

(t2+1)
3
2
. Hence limt→∞ y(t) = 2.

(e) y(t) = t3 ln |t|+ Ct3.

(f) y(t) = 2et+C
t

.

(g) y(t) = (t2+t)√
2t+1

+ C√
2t+1

. Note that the integrating factor is µ(t) = e
R

1
2t+1

dt =

e
1
2

ln |2t+1| = eln |2t+1|
1
2 = |2t + 1| 12 .

(h) Let v = y1− 2
3 = y

1
3 . Then we have v′ − 2

t
v = 4t3 and v(t) = 2t4 + Ct2. Using

y = v3, we get y = v3 = (2t4 + Ct2)3.

(i) This can be rewritten as dy
dx

= 5x4y2 − 4x2y2 = y2(5x4 − 4x2). The general

solution is y = −1
x5− 4

3
x3+C

.

(j) Let P = 6xy + 2y2 and Q = 9x2 + 8xy + y. Note that Py = 6x + 4y and

Qx = 18x + 8y. This equation is not exact. Let µ = µ(x, y) be the integrating

factor. µ(6xy + 2y2) + µ(9x2 + 8xy + y) dy
dx

= 0 is exact if (µ(6xy + 2y2))y =

(µ(9x2+8xy+y))x, i.e. µy(6xy+2y2)+µ(6x+4y) = µx(9x
2+8xy+y)+µ(18x+8y).

This can be simplified as µy2y(3x+y)−µx(9x
2+8xy+y) = 4µ(3x+y) Hence there

exists µ = µ(y) which is a solution of µy2y(3x+y)) = 4µ(3x+y). This is the same

as dµ
dy

= 2µ
y

. Thus µ = y2. Now y2(6xy + 2y2) + y2(9x2 + 8xy + y) dy
dx

= 0 Solving

Fx = y2(6xy+2y2) = 6xy3 +2y4 and Fy = y2(9x2 +8xy+y) = 9x2y2 +8xy3 +y3.

We have F (x, y) = 3x2y3 + 2xy4 + y4

4
= C.

(k) This is a exact equation. We have xey + sin(x)y + ey = C.

(l) There is a typo in this problem. This problem should be dy
dx

= (x + y)2 − 1. Let

v = x + y. We have dv
dx

= 1 + dy
dx

= 1 + (x + y)2 − 1 = v2 Thus
∫

dv
v2 =

∫
dx,

− 1
v

= x + c and v = − 1
x+c

. Recall that v = x + y. Hence y + x = − 1
x+c

and

y = −x− 1
x+c

.

(m) The equation 2x2y − x3 dy
dx

= y3 can be written as a homogeneous equation
dy
dx

= −y3+2x2y
x3 = −( y

x
)3 +2 y

x
. Let v = y

x
. After simplification, we have

∫
dv

−v3+v
=∫

dx. By partial fraction, we have 1
−v3+v

= 1
v
− 1

2(v−1)
− 1

2(v+1)
and

∫
dv

−v3+v
=

ln |v| − 1
2
ln |v2 − 1| + C1. We have ln |v| − 1

2
ln |v2 − 1| = x + C. Substituting

v = y
x
, ln | y

x
| − 1

2
ln | y2

x2 − 1| = x + C

(n) The equation dy
dx

= 1 + x2 + y2 + x2y2 can be written as a separable equation
dy
dx

= 1 + x2 + y2(1 + x2) = (1 + x2)(1 + y2). Solving
∫

dy
1+y2 =

∫
(1 + x2)dx, we

get arctan(y) = x + x3

3
+ C and y = tan(x + x3

3
+ C).
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(6) Using separation of variables, we have y(t) = ( 1
−3t+ 1

y3
0

)
1
3 . Note that 1

3y3
0

> 0. We have

limt→( 1

3y3
0
)− y(t) = ∞.

(7) Obviously, y1(t) = 0 is a solution of dy
dt

= y sin(x)
1+t2+y2 . Now we have y(0) = −2 < 0 =

y1(0). Obviously, the solution to dy
dt

= y sin(x)
1+t2+y2 is unique. We have y(t) < y1(0) = 0,

i.e. y is always negative.

(8) The equation (9− t2)dy
dt

+ y
t

= cos(t) can be rewritten as dy
dt

+ 1
t(3−t)(3+t)

y = cos(t)
(3−t)(3+t)

.

Both 1
t(3−t)(3+t)

and cos(t)
(3−t)(3+t)

are continuous on (−∞,−3) ∪ (−3, 0) ∪ (0, 3) ∪ (0,∞).

(a) Since −1 ∈ (−3, 0), this solution exists on the interval (−3, 0).

(b) Since 1 ∈ (0, 3), this solution exists on the interval (0, 3).

(c) Since 4 ∈ (3,∞), this solution exists on the interval (3,∞).

(d) Since −4 ∈ (−∞,−3), this solution exists on the interval (−∞,−3).

(9) In each problem, determine the equilibrium points, and classify each one as asymp-

totically stable, unstable, or semistable.

(a) The equilibrium points are y = kπ where k is an integer. Since y2 sin2(y) > 0 if

y 6= kπ, we know that all the equilibrium points are semistable.

(b) The equilibrium points are y = kπ where k is an integer. The sign graph

of y sin(y) and sin(y) is the same when y > 0. The sign graph of y sin(y)

and − sin(y) is the same when y < 0. Thus y sin(y) > 0 when 2kπ < y <

(2k + 1)π or −(2k + 1)π < y < −2kπ where k is an nonnegative integer.

Thus y sin(y) < 0 when (2k + 1)π < y < (2k + 2)π or −(2k + 2)π < y <

−(2k + 1)π where k is an nonnegative integer. Thus 0 is an semistable equilib-

rium point. {π, 3π, 5π, · · · } and {−2π,−4π,−6π, · · · } are asymptotically stable

equilibrium points. {2π, 4π, 6π, · · · } and {−π,−3π,−5π, · · · } are unstable equi-

librium points.

(c) Let f(y) = (−y3 + 3y2− 2y)(y− 3)2. We have f(y) = −y(y2− 3y + 2)(y− 3)2 =

−y(y− 1)(y− 2)(y− 3)2. Thus f(y) > 0 when y ∈ (−∞, 0)∪ (1, 2) and f(y) < 0

when y ∈ (0, 1) ∪ (2, 3) ∪ (3,∞). Therefore {0, 2} are are asymptotically stable

equilibrium points, 1 is an unstable equilibrium point and 3 is a semistable

equilibrium point.

(d) Let f(y) = y3−3y2+2y = y(y−1)(y−2). Thus f(y) > 0 when y ∈ (0, 1)∪(2,∞)

and f(y) < 0 y ∈ (−∞, 0) ∪ (1, 2). Hence y = 1 are are asymptotically stable

equilibrium points, y = 0 and y = 2 are unstable equilibrium points.

(10) (a) Let f(y) = y2(y−2)
y−1

. We have f(y) > 0 if y ∈ (0, 1) ∪ (2,∞) ∪ (−∞, 0) and

f(y) < 0 if y ∈ (1, 2). Note that y = 0 and y = 2 are equilibrium solutions.

The graph of y has a vertical tangent line when y = 1. Let y(t) be the solution

to dy
dt

= y2(y−2)
y−1

with y(0) = y0. If y0 > 2, y(t) is increasing and it will escape
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to ∞. If 1 < y0 < 2, y(t) is will decrease to 1 in a finite time with a vertical

tangent line when y = 1. If 0 < y0 < 1, y(t) will increase to 1 in a finite time

with vertical a vertical tangent line when y = 1. If y0 < 0, y(t) is increasing and

limt→∞ y(t) = 0.

(b) dy
dt

= (y2−4)
y−1

Let f(y) = (y2−4)
y−1

. We have f(y) > 0 if y ∈ (−2, 1) ∪ (2,∞) and

f(y) < 0 if y ∈ (1, 2) ∪ (−∞,−2). Note that y = −2 and y = 2 are equilibrium

solutions. The graph of y has a vertical tangent line when y = 1. Let y(t) be

the solution to dy
dt

= (y2−4)
y−1

with y(0) = y0. If y0 > 2, y(t) is increasing and it

will escape to ∞. If 1 < y0 < 2, y(t) is will decrease to 1 in a finite time with

a vertical tangent line when y = 1. If −2 < y0 < 1, y(t) will increase to 1 in a

finite time with vertical a vertical tangent line when y = 1. If y0 < −2, y(t) is

decreasing and it will escape to −∞.

(11) Since dy
dt

= 4y − y2, we have d2y
dt2

= d
dt

(y′) = d
dt

(4y − y2) = (4y′ − 2yy′) = (4− 2y)y′ =

(4− 2y)(4y − y2) = 2y(1− y)(2− y).

Since d2y
dt2

= 2y(1 − y)(2 − y), we have d2y
dt2

> 0 if y ∈ (0, 1) ∪ (2,∞) and d2y
dt2

< 0 if

y ∈ (−∞, 0)∪(1, 2). Note that dy
dt

> 0 if y ∈ (0, 4) and dy
dt

< 0 if y ∈ (−∞, 0)∪(4,∞).


