## Solution to Review Problems for Midterm I

MATH 3860-001

Disclaimer: My solution is only correct up to a constant. Please email(Mao-Pei.Tsui@math.utoledo.edu) me if you find any mistake. You can skip problems 5 j and 5 k . They are from section 2.6 which is not a topic for this midterm.
(1) (a) From the slope field, it seems that all solutions converge to $y=x+1$. One can also check easily that $y=x+1$ is a solution of $\frac{d y}{d x}=(x-y+1)(1+\sin (x y))+1$.
(b) One can check easily that $y=0$ and $y=2$ are solutions to $\frac{d y}{d x}=\left(2 y-y^{2}\right)(1+$ $x^{2} y^{2}$ ). Suppose $y(0)>2$ or $0<y(0)<2$, we have $\lim _{x \rightarrow \infty} y(x)=2$. Suppose $y(0)<0$, we have $y(x) \rightarrow-\infty$.
(2) (a) Let $v=a x+b y+c$. Since $\frac{d v}{d x}=a+b \frac{d y}{d x}$ and $\frac{d y}{d x}=F(a x+b y+c)$, we have $\frac{d v}{d x}=a+b F(a x+b y+c)=a+b F(v)$. Thus $\int \frac{d v}{a+b F(v)}=\int d x$.
(b) Let $v=x+y+1$. Since $\frac{d v}{d x}=1+\frac{d y}{d x}$ and $\frac{d y}{d x}=(x+y+1)^{2}=v^{2}$, we have $\frac{d v}{d x}=1+v^{2}$. Thus $\int \frac{d v}{1+v^{2}}=\int d x, \arctan (v)=x+c$ and $v=\tan (x+c)$. Recall that $v=x+y+1$, we have $y=v-x-1=\tan (x+c)-x-1$.
(3) (a) Let $v=\frac{y}{x}$, i.e. $y=x v$. Using $\frac{d y}{d x}=v+x \frac{d v}{d x}$ and $\frac{d y}{d x}=F\left(\frac{y}{x}\right)=F(v)$, we have $v+x \frac{d v}{d x}=F(v)$. It can be rewritten as $x \frac{d v}{d x}=F(v)-v$ which can be solved by $\int \frac{d v}{F(v)-v}=\int \frac{d x}{x}$.
(b) The equation $x^{2} \frac{d y}{d x}=y^{2}+x y-x^{2}$ can be simplified as $\frac{d y}{d x}=\frac{y^{2}+x y-x^{2}}{x^{2}}=\left(\frac{y}{x}\right)^{2}+\frac{y}{x}-1$. Let $v=\frac{y}{x}$. Note that $\left(\frac{y}{x}\right)^{2}+\frac{y}{x}-1=v^{2}+v-1$. Following the same computation as above, we have $x \frac{d v}{d x}=v^{2}-1$. It can be solved by $\int \frac{d v}{v^{2}-1}=\int \frac{d x}{x}$. Note that $\int \frac{d v}{v^{2}-1}=\int \frac{1}{2(v-1)}-\frac{1}{2(v+1)} d v=\frac{1}{2} \ln \left|\frac{v-1}{v+1}\right|+D$. Hence $\frac{1}{2} \ln \left|\frac{v-1}{v+1}\right|=\ln |x|+C$ and $\ln \left|\frac{v-1}{v+1}\right|=2 \ln |x|+c=\ln |x|^{2}+c$. Therefore $\frac{v-1}{v+1}=C x^{2}$ and $v=\frac{1+C x^{2}}{1-C x^{2}}$. Recall that $v=\frac{y}{x}$. It follows that $y=x v=x \cdot \frac{1+C x^{2}}{1-C x^{2}}$.
(4) (a) Separate the equation, we have $\int\left(3 y^{2}-6 y\right) d y=\int 2 x d x$ and $y^{3}-3 y^{2}=x^{2}+C$. Plugging $y(0)=1$, we have $C=-2$ Thus the solution $(x, y)$ satisfies $y^{3}-3 y^{2}=$ $x^{2}-2$. From the equation $y^{\prime}=\frac{2 x}{3 y^{2}-6 y}$, we know that the solution $y$ will not exist if $3 y^{2}-6 y=3 y(y-2)=0$, that is $y=0$ and $y=2$. If $y=0$, we have $0=x^{2}-2$, i.e. $x= \pm \sqrt{2}$. From the graph in Figure 3, we know that the solution exists on the interval $-\sqrt{2}<x<\sqrt{2}$.
(b) Using $y^{3}-3 y^{2}=x^{2}+C$ and $y(\sqrt{18})=4$, we have $64-48=18+C$ and $C=-2$. So the solution $(x, y)$ satisfies $y^{3}-3 y^{2}=x^{2}-2$. From the graph of $y^{3}-3 y^{2}=x^{2}-2$, we know that the solution exists on the interval $-\infty<x<\infty$.
(5) Solve the following equations.
(a) $y(t)=\frac{2 t}{3}+\frac{1}{9}+C e^{-3 t}$. Thus $\lim _{t \rightarrow \infty} y(t)-\frac{2 t}{3}-\frac{1}{9}=0$.
page 1 of 4
(b) $y(t)=-\frac{1}{2} \cos (t)+\frac{1}{2} \sin (t)+\left(y_{0}+\frac{1}{2}\right) e^{t}$ If $y_{0}=-\frac{1}{2}$ then the solution remains finite as $t \rightarrow \infty$. We have used the fact that $\lim _{t \rightarrow \infty} e^{3 t}=\infty$.
(c) $y(t)=\frac{1}{4} e^{-t}+\left(y_{0}-\frac{1}{4}\right) e^{3 t}$. Note that $\lim _{t \rightarrow \infty} e^{3 t}=\infty$ and $\lim _{t \rightarrow \infty} e^{-t}=0$. The condition $y_{0}<\frac{1}{4}$ will imply that $\lim _{t \rightarrow \infty} y(t)=-\infty$.
(d) $y(t)=2+\frac{C}{\left(t^{2}+1\right)^{\frac{3}{2}}}$. Hence $\lim _{t \rightarrow \infty} y(t)=2$.
(e) $y(t)=t^{3} \ln |t|+C t^{3}$.
(f) $y(t)=\frac{2 e^{t}+C}{t}$.
(g) $y(t)=\frac{\left(t^{2}+t\right)}{\sqrt{2 t+1}}+\frac{C}{\sqrt{2 t+1}}$. Note that the integrating factor is $\mu(t)=e^{\int \frac{1}{2 t+1} d t}=$ $e^{\frac{1}{2} \ln |2 t+1|}=e^{\ln |2 t+1|^{\frac{1}{2}}}=|2 t+1|^{\frac{1}{2}}$.
(h) Let $v=y^{1-\frac{2}{3}}=y^{\frac{1}{3}}$. Then we have $v^{\prime}-\frac{2}{t} v=4 t^{3}$ and $v(t)=2 t^{4}+C t^{2}$. Using $y=v^{3}$, we get $y=v^{3}=\left(2 t^{4}+C t^{2}\right)^{3}$.
(i) This can be rewritten as $\frac{d y}{d x}=5 x^{4} y^{2}-4 x^{2} y^{2}=y^{2}\left(5 x^{4}-4 x^{2}\right)$. The general solution is $y=\frac{-1}{x^{5}-\frac{4}{3} x^{3}+C}$.
(j) Let $P=6 x y+2 y^{2}$ and $Q=9 x^{2}+8 x y+y$. Note that $P_{y}=6 x+4 y$ and $Q_{x}=18 x+8 y$. This equation is not exact. Let $\mu=\mu(x, y)$ be the integrating factor. $\mu\left(6 x y+2 y^{2}\right)+\mu\left(9 x^{2}+8 x y+y\right) \frac{d y}{d x}=0$ is exact if $\left(\mu\left(6 x y+2 y^{2}\right)\right)_{y}=$ $\left(\mu\left(9 x^{2}+8 x y+y\right)\right)_{x}$, i.e. $\mu_{y}\left(6 x y+2 y^{2}\right)+\mu(6 x+4 y)=\mu_{x}\left(9 x^{2}+8 x y+y\right)+\mu(18 x+8 y)$. This can be simplified as $\mu_{y} 2 y(3 x+y)-\mu_{x}\left(9 x^{2}+8 x y+y\right)=4 \mu(3 x+y)$ Hence there exists $\mu=\mu(y)$ which is a solution of $\left.\mu_{y} 2 y(3 x+y)\right)=4 \mu(3 x+y)$. This is the same as $\frac{d \mu}{d y}=\frac{2 \mu}{y}$. Thus $\mu=y^{2}$. Now $y^{2}\left(6 x y+2 y^{2}\right)+y^{2}\left(9 x^{2}+8 x y+y\right) \frac{d y}{d x}=0$ Solving $F_{x}=y^{2}\left(6 x y+2 y^{2}\right)=6 x y^{3}+2 y^{4}$ and $F_{y}=y^{2}\left(9 x^{2}+8 x y+y\right)=9 x^{2} y^{2}+8 x y^{3}+y^{3}$. We have $F(x, y)=3 x^{2} y^{3}+2 x y^{4}+\frac{y^{4}}{4}=C$.
(k) This is a exact equation. We have $x e^{y}+\sin (x) y+e^{y}=C$.
(l) There is a typo in this problem. This problem should be $\frac{d y}{d x}=(x+y)^{2}-1$. Let $v=x+y$. We have $\frac{d v}{d x}=1+\frac{d y}{d x}=1+(x+y)^{2}-1=v^{2}$ Thus $\int \frac{d v}{v^{2}}=\int d x$, $-\frac{1}{v}=x+c$ and $v=-\frac{1}{x+c}$. Recall that $v=x+y$. Hence $y+x=-\frac{1}{x+c}$ and $y=-x-\frac{1}{x+c}$.
(m) The equation $2 x^{2} y-x^{3} \frac{d y}{d x}=y^{3}$ can be written as a homogeneous equation $\frac{d y}{d x}=\frac{-y^{3}+2 x^{2} y}{x^{3}}=-\left(\frac{y}{x}\right)^{3}+2 \frac{y}{x}$. Let $v=\frac{y}{x}$. After simplification, we have $\int \frac{d v}{-v^{3}+v}=$ $\int d x$. By partial fraction, we have $\frac{1}{-v^{3}+v}=\frac{1}{v}-\frac{1}{2(v-1)}-\frac{1}{2(v+1)}$ and $\int \frac{d v}{-v^{3}+v}=$ $\ln |v|-\frac{1}{2} \ln \left|v^{2}-1\right|+C_{1}$. We have $\ln |v|-\frac{1}{2} \ln \left|v^{2}-1\right|=x+C$. Substituting $v=\frac{y}{x}, \ln \left|\frac{y}{x}\right|-\frac{1}{2} \ln \left|\frac{y^{2}}{x^{2}}-1\right|=x+C$
(n) The equation $\frac{d y}{d x}=1+x^{2}+y^{2}+x^{2} y^{2}$ can be written as a separable equation $\frac{d y}{d x}=1+x^{2}+y^{2}\left(1+x^{2}\right)=\left(1+x^{2}\right)\left(1+y^{2}\right)$. Solving $\int \frac{d y}{1+y^{2}}=\int\left(1+x^{2}\right) d x$, we get $\arctan (y)=x+\frac{x^{3}}{3}+C$ and $y=\tan \left(x+\frac{x^{3}}{3}+C\right)$.
(6) Using separation of variables, we have $y(t)=\left(\frac{1}{-3 t+\frac{1}{y_{0}^{3}}}\right)^{\frac{1}{3}}$. Note that $\frac{1}{3 y_{0}^{3}}>0$. We have $\lim _{t \rightarrow\left(\frac{1}{3 y_{0}^{3}}\right)^{-}} y(t)=\infty$.
(7) Obviously, $y_{1}(t)=0$ is a solution of $\frac{d y}{d t}=\frac{y \sin (x)}{1+t^{2}+y^{2}}$. Now we have $y(0)=-2<0=$ $y_{1}(0)$. Obviously, the solution to $\frac{d y}{d t}=\frac{y \sin (x)}{1+t^{2}+y^{2}}$ is unique. We have $y(t)<y_{1}(0)=0$, i.e. $y$ is always negative.
(8) The equation $\left(9-t^{2}\right) \frac{d y}{d t}+\frac{y}{t}=\cos (t)$ can be rewritten as $\frac{d y}{d t}+\frac{1}{t(3-t)(3+t)} y=\frac{\cos (t)}{(3-t)(3+t)}$. Both $\frac{1}{t(3-t)(3+t)}$ and $\frac{\cos (t)}{(3-t)(3+t)}$ are continuous on $(-\infty,-3) \cup(-3,0) \cup(0,3) \cup(0, \infty)$.
(a) Since $-1 \in(-3,0)$, this solution exists on the interval $(-3,0)$.
(b) Since $1 \in(0,3)$, this solution exists on the interval $(0,3)$.
(c) Since $4 \in(3, \infty)$, this solution exists on the interval $(3, \infty)$.
(d) Since $-4 \in(-\infty,-3)$, this solution exists on the interval $(-\infty,-3)$.
(9) In each problem, determine the equilibrium points, and classify each one as asymptotically stable, unstable, or semistable.
(a) The equilibrium points are $y=k \pi$ where $k$ is an integer. Since $y^{2} \sin ^{2}(y)>0$ if $y \neq k \pi$, we know that all the equilibrium points are semistable.
(b) The equilibrium points are $y=k \pi$ where $k$ is an integer. The sign graph of $y \sin (y)$ and $\sin (y)$ is the same when $y>0$. The sign graph of $y \sin (y)$ and $-\sin (y)$ is the same when $y<0$. Thus $y \sin (y)>0$ when $2 k \pi<y<$ $(2 k+1) \pi$ or $-(2 k+1) \pi<y<-2 k \pi$ where $k$ is an nonnegative integer. Thus $y \sin (y)<0$ when $(2 k+1) \pi<y<(2 k+2) \pi$ or $-(2 k+2) \pi<y<$ $-(2 k+1) \pi$ where $k$ is an nonnegative integer. Thus 0 is an semistable equilibrium point. $\{\pi, 3 \pi, 5 \pi, \cdots\}$ and $\{-2 \pi,-4 \pi,-6 \pi, \cdots\}$ are asymptotically stable equilibrium points. $\{2 \pi, 4 \pi, 6 \pi, \cdots\}$ and $\{-\pi,-3 \pi,-5 \pi, \cdots\}$ are unstable equilibrium points.
(c) Let $f(y)=\left(-y^{3}+3 y^{2}-2 y\right)(y-3)^{2}$. We have $f(y)=-y\left(y^{2}-3 y+2\right)(y-3)^{2}=$ $-y(y-1)(y-2)(y-3)^{2}$. Thus $f(y)>0$ when $y \in(-\infty, 0) \cup(1,2)$ and $f(y)<0$ when $y \in(0,1) \cup(2,3) \cup(3, \infty)$. Therefore $\{0,2\}$ are are asymptotically stable equilibrium points, 1 is an unstable equilibrium point and 3 is a semistable equilibrium point.
(d) Let $f(y)=y^{3}-3 y^{2}+2 y=y(y-1)(y-2)$. Thus $f(y)>0$ when $y \in(0,1) \cup(2, \infty)$ and $f(y)<0 y \in(-\infty, 0) \cup(1,2)$. Hence $y=1$ are are asymptotically stable equilibrium points, $y=0$ and $y=2$ are unstable equilibrium points.
(a) Let $f(y)=\frac{y^{2}(y-2)}{y-1}$. We have $f(y)>0$ if $y \in(0,1) \cup(2, \infty) \cup(-\infty, 0)$ and $f(y)<0$ if $y \in(1,2)$. Note that $y=0$ and $y=2$ are equilibrium solutions. The graph of $y$ has a vertical tangent line when $y=1$. Let $y(t)$ be the solution to $\frac{d y}{d t}=\frac{y^{2}(y-2)}{y-1}$ with $y(0)=y_{0}$. If $y_{0}>2, y(t)$ is increasing and it will escape
to $\infty$. If $1<y_{0}<2, y(t)$ is will decrease to 1 in a finite time with a vertical tangent line when $y=1$. If $0<y_{0}<1, y(t)$ will increase to 1 in a finite time with vertical a vertical tangent line when $y=1$. If $y_{0}<0, y(t)$ is increasing and $\lim _{t \rightarrow \infty} y(t)=0$.
(b) $\frac{d y}{d t}=\frac{\left(y^{2}-4\right)}{y-1}$ Let $f(y)=\frac{\left(y^{2}-4\right)}{y-1}$. We have $f(y)>0$ if $y \in(-2,1) \cup(2, \infty)$ and $f(y)<0$ if $y \in(1,2) \cup(-\infty,-2)$. Note that $y=-2$ and $y=2$ are equilibrium solutions. The graph of $y$ has a vertical tangent line when $y=1$. Let $y(t)$ be the solution to $\frac{d y}{d t}=\frac{\left(y^{2}-4\right)}{y-1}$ with $y(0)=y_{0}$. If $y_{0}>2, y(t)$ is increasing and it will escape to $\infty$. If $1<y_{0}<2, y(t)$ is will decrease to 1 in a finite time with a vertical tangent line when $y=1$. If $-2<y_{0}<1, y(t)$ will increase to 1 in a finite time with vertical a vertical tangent line when $y=1$. If $y_{0}<-2, y(t)$ is decreasing and it will escape to $-\infty$.
(11) Since $\frac{d y}{d t}=4 y-y^{2}$, we have $\frac{d^{2} y}{d t^{2}}=\frac{d}{d t}\left(y^{\prime}\right)=\frac{d}{d t}\left(4 y-y^{2}\right)=\left(4 y^{\prime}-2 y y^{\prime}\right)=(4-2 y) y^{\prime}=$ $(4-2 y)\left(4 y-y^{2}\right)=2 y(1-y)(2-y)$.
Since $\frac{d^{2} y}{d t^{2}}=2 y(1-y)(2-y)$, we have $\frac{d^{2} y}{d t^{2}}>0$ if $y \in(0,1) \cup(2, \infty)$ and $\frac{d^{2} y}{d t^{2}}<0$ if $y \in(-\infty, 0) \cup(1,2)$. Note that $\frac{d y}{d t}>0$ if $y \in(0,4)$ and $\frac{d y}{d t}<0$ if $y \in(-\infty, 0) \cup(4, \infty)$.

