Solution to Review Problems for Midterm |
MATH 3860 — 001

Disclaimer: My solution is only correct up to a constant.

Please email(Mao-Pei.Tsui@math.utoledo.edu) me if you find any mistake.
You can skip problems 5j and 5k. They are from section 2.6 which is not a topic
for this midterm.

(1) (a) From the slope field, it seems that all solutions converge to y = x + 1. One can
also check easily that y = 2 41 is a solution of Z—g =(x—y+1)(1+sin(zy)) + 1.
(b) One can check easily that y = 0 and y = 2 are solutions to % =2y —y*)(1 +
242). Suppose y(0) > 2 or 0 < y(0) < 2, we have lim,_ ., y(x) = 2. Suppose
y(0) < 0, we have y(z) — —o0.
(2) (a) Let v = ax 4 by + ¢. Since & = a + bdy and dy = F(ax + by + c), we have
dv_a+bF(a1‘—|—by+c)—a+bF’() Thusfa+va) [ dx.
(b) Let v = x—l—y—l—l S1nce do— 14 d;’; and Z?; = (z +y + 1)* = v? we have
2 — 1+ 2% Thus 1+02 = [dx, arctan(v) = x + ¢ and v = tan(z + ¢). Recall
that v =o+y + 1, Wehavey—v—x—lztan(x—I—c)—x—l.
(3) (a) Let v =Y ie. y =av. Using % = v+ 2% and £ = F(¥) = F(v), we have
v+ 2% = F(v). It can be rewritten as lel” = F(v) — v which can be solved by
I e dv —[&

(b) The equatlonav = y?+ay—a? can be simplified as & = = yay—a? = (£)2+4-1.

(L‘

Let v = £. Note that (4P4+L-1=v*+v-1. Followmg the same computation
as above we have xg” = v2 — 1. Tt can be solved by f v2dﬁ1 =/ df. Note that
vQ - IQU 5 - v+1 ———dv = 1ln|v+1l +D. Hence lan;} =In|z| + C and
In || = 2In |z| 4+ ¢ = In|z[? = Oz and v = 92 Recall
that v =Y Tt follows that y = 2v = x - 1+C"”2.
(4) (a) Separate the equation, we have [(3y? —6y)dy = [2zdz and y* — 3y* = 2* + C.
Plugging y(0) = 1, we have C' = —2 Thus the solution (z,y) satisfies y3 — 3y* =
22 —2. From the equation y’ = 32122—9”6, we know that the solution y will not exist
if 3y>—6y = 3y(y—2) =0, that isy = 0 and y = 2. If y = 0, we have 0 = 2% —2,
i.e. = ++/2. From the graph in Figure 3, we know that the solution exists on
the interval —v/2 < = < /2.
(b) Using ¢* — 3y*> = 22 + C and y(v/18) = 4, we have 64 — 48 = 18 + C' and
C = —2. So the solution (x,y) satisfies y> — 3y?> = 2% — 2. From the graph of
y3 —3y? = 22 —2, we know that the solution exists on the interval —oco < x < co.
(5) Solve the following equations.

(a) y(t) = & + § + Ce " . Thus limy_.. y(t) —
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(b) y(t) = —1 cos(t)+ 3 sin(t) + (yo+ 3 )¢’ If yo = —3 then the solution remains finite
as t — oo. We have used the fact that lim;_., e¥ = oo.

(c) y(t) = 37" + (yo — 3)e. Note that lim;_ ¥ = oo and limy_,o ™" = 0. The

condition yo < 1 will imply that lim,_ y(t) = —oo.

(d) yt) =2+ (thl) Hence lim; .., y(t) = 2.
(e) y(t) = t3Inlt| + Ct3.
_ 2e4C
(F) y(t) = =7
(8) y(t) = \(;% + \/2€T Note that the integrating factor is u(t) = e errdl —

11n\2t+1| _ 61n|2t+1\2 |2t+ 1|%_

(h) Let v = y*~3 = y3. Then we have v/ — 2v = 4t* and v(t) = 2t* + Ct*. Using
y =03, we get y = v3 = (2t4+C’t2)

(i) This can be rewritten as % = baly? — 42%y? = y?(5z' — 42?). The general
solution is y = m—4;3—+0

(j) Let P = 6xy+2y and Q = 92% + 8xy + y. Note that P, = 6z + 4y and
Q. = 18z + 8y. This equation is not exact. Let u = p(z,y) be the integrating
factor. pu(6zy + 2y?) + p(92% + 8xy + y) L = 0 is exact if (u(6zy + 2y?)), =
(922 481y +y) ), 1. puy (62y+2y?)+p(62+4y) = py (922 +8zy+y)+u(182+8y).
This can be simplified as 1, 2y(3z+y) — . (92°+8zy+y) = 4u(3z+y) Hence there
exists ¢ = p(y) which is a solution of 11,2y (3z+y)) = 4p(3x+y). This is the same

as ‘;’; = 2“ Thus p = y?. Now 3?(6zy + 2y?) + y*(92> +83:y~|—y)dy = 0 Solving
F,=y (6:Uy+2y ) = 6ay® +2y* and F, = y*(922 +8zy +y) = 922y* 4+ 8xy® + .
We have F(z,y) = 3z2y3 + 2xy* + % =C.

(k) This is a exact equation. We have ze¥ + sin(x)y + ¢¥ = C.

(1) There is a typo in this problem. This problem should be % = (r+y)*—1. Let

v=T+Y. Wehave—z—1+dy—1+(x+y) 1= Thus [% = [du,

—% =z +cand v = —#. Recall that v = x +y. Hence y +x = _lerc and
y=—T—

(m) The equation 202y — xgj—g = o3 can be written as a homogeneous equation
% = % = —(¥)3+2% Let v = L. After simplification, we have [ —2 v3+v =
[ dx. By partial fraction, we have _U§+U =1_ ﬁ - m and [ —4 — =

Injo| — Infv? — 1| + C;. We have In|v| — ;In|v? — 1| = z + C. Substituting
=4 m|Y —Ltm|E —1|=2+C

(n) The equation g—z = 1+ 22 4+ y? + 2%y can be written as a separable equation

W =1 +22+y*(1+2%) = (1+2?)(1+y?). Solving [ 1%:/2 = [(1 + 2?)dz, we
get arctan(y) = = + %3 + C and y = tan(x + %3 +O).
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(6) Using separation of variables, we have y(t) = (——)3. Note that # > 0. We have
0
limtﬁ(%), y(t) = 0.
(7) Obviously, y;(t) = 0 is a solution of % = ff;‘f;é Now we have y(0) = -2 < 0 =

y1(0). Obviously, the solution to % = fjt‘;lgz is unique. We have y(t) < y1(0) = 0,

i.e. y is always negative.
(8) The equation (9 —#2)% + ¥ = cos(t) can be rewritten as % + t(g_t§(3+t)y = (Sf(t))s((;)-i-t)'
Both t(37t§(3+t) and (3f‘z)s((§)+t) are continuous on (—oo, —3) U (—3,0) U (0,3) U (0, 00).
(a) Since —1 € (—3,0), this solution exists on the interval (—3,0).
(b) Since 1 € (0,3), this solution exists on the interval (0, 3).
(c) Since 4 € (3, 00), this solution exists on the interval (3, 00).
(d) Since —4 € (—o0, —3), this solution exists on the interval (—oo, —3).
(9) In each problem, determine the equilibrium points, and classify each one as asymp-
totically stable, unstable, or semistable.
(a) The equilibrium points are y = k7 where k is an integer. Since y?sin?(y) > 0 if

y # km, we know that all the equilibrium points are semistable.

(b) The equilibrium points are y = km where k is an integer. The sign graph
of ysin(y) and sin(y) is the same when y > 0. The sign graph of ysin(y)
and —sin(y) is the same when y < 0. Thus ysin(y) > 0 when 2k7m < y <
(2k + 1)m or —(2k + 1)m < y < —2km where k is an nonnegative integer.
Thus ysin(y) < 0 when 2k 4+ )m <y < 2k +2)mr or —(2k +2)71 < y <
—(2k 4 1)m where k is an nonnegative integer. Thus 0 is an semistable equilib-
rium point. {m,3x, 57, -} and {—27, —4mw, —6m7, - - - } are asymptotically stable
equilibrium points. {27, 47,67, .-} and {—=n, =37, —5m, - - - } are unstable equi-
librium points.

(c) Let f(y) = (—y*+3y* = 2y)(y — 3)*>. We have f(y) = —y(y* =3y +2)(y —3)* =
—y(y—1)(y —2)(y — 3)*. Thus f(y) > 0 when y € (—00,0)U(1,2) and f(y) < 0
when y € (0,1) U (2,3) U (3,00). Therefore {0,2} are are asymptotically stable
equilibrium points, 1 is an unstable equilibrium point and 3 is a semistable
equilibrium point.

(d) Let f(y) = v*—3y*+2y = y(y—1)(y—2). Thus f(y) > 0 when y € (0,1)U(2, c0)
and f(y) <0y € (—00,0) U (1,2). Hence y = 1 are are asymptotically stable
equilibrium points, y = 0 and y = 2 are unstable equilibrium points.

(10) (a) Let f(y) = % We have f(y) > 0if y € (0,1) U (2,00) U (—00,0) and
fly) < 0if y € (1,2). Note that y = 0 and y = 2 are equilibrium solutions.
The graph of y has a vertical tangent line when y = 1. Let y(¢) be the solution

to % = % with y(0) = yo. If yo > 2, y(t) is increasing and it will escape
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(1

to oco. If 1 < yp < 2, y(t) is will decrease to 1 in a finite time with a vertical
tangent line when y = 1. If 0 < yo < 1, y(¢) will increase to 1 in a finite time
with vertical a vertical tangent line when y = 1. If yo < 0, y(¢) is increasing and
limy oo y(t) = 0.

(b) & = (yy _14 Let f(y) = (?’;:14). We have f(y) > 0if y € (=2,1) U (2,00) and
fly) <0ify e (1,2) U (—o0,—2). Note that y = —2 and y = 2 are equilibrium
solutions. The graph of y has a vertical tangent line when y = 1. Let y(t) be

the solution to d— = (3’;%14) with y(0) = yo. If yo > 2, y(¢) is increasing and it

t
will escape to oo. If 1 < yg < 2, y(t) is will decrease to 1 in a finite time with

a vertical tangent line when y = 1. If —2 < yo < 1, y(t) will increase to 1 in a

finite time with vertical a vertical tangent line when y = 1. If yo < —2, y(¢) is
decreasing and it will escape to —o0.

1) Since % =4y — y?, we have T¥ = L(y) = L(dy —y?) = (4y' — 2yy') = (4 — 2y’ =
(4- 2y)(4y y?) =2y(1 —y)(2 —y). -

Since ¢ =2yl —y)(2—y), we have 4 % > 0if y € (0,1) U (2,00) and ‘;g < 0 if

y € (—00,0)U(1,2). Note that % > 0if y € (0,4) and % < 0if y € (—o0,0)U(4, 00).



