Solution to Review Problems for Midterm I

MATH 3860 - 001

Disclaimer: My solution is only correct up to a constant. Please email(Mao-Pei.Tsui@math.utoledo.edu) me if you find any mistake. You can skip problems 5j and 5k. They are from section 2.6 which is not a topic for this midterm.

- (1) (a) From the slope field, it seems that all solutions converge to y = x + 1. One can also check easily that y = x + 1 is a solution of $\frac{dy}{dx} = (x y + 1)(1 + \sin(xy)) + 1$.
 - (b) One can check easily that y = 0 and y = 2 are solutions to $\frac{dy}{dx} = (2y y^2)(1 + x^2y^2)$. Suppose y(0) > 2 or 0 < y(0) < 2, we have $\lim_{x\to\infty} y(x) = 2$. Suppose y(0) < 0, we have $y(x) \to -\infty$.
- (2) (a) Let v = ax + by + c. Since $\frac{dv}{dx} = a + b\frac{dy}{dx}$ and $\frac{dy}{dx} = F(ax + by + c)$, we have $\frac{dv}{dx} = a + bF(ax + by + c) = a + bF(v)$. Thus $\int \frac{dv}{a+bF(v)} = \int dx$.
 - (b) Let v = x + y + 1. Since $\frac{dv}{dx} = 1 + \frac{dy}{dx}$ and $\frac{dy}{dx} = (x + y + 1)^2 = v^2$, we have $\frac{dv}{dx} = 1 + v^2$. Thus $\int \frac{dv}{1 + v^2} = \int dx$, $\arctan(v) = x + c$ and $v = \tan(x + c)$. Recall that v = x + y + 1, we have $y = v x 1 = \tan(x + c) x 1$.
- (3) (a) Let $v = \frac{y}{x}$, i.e. y = xv. Using $\frac{dy}{dx} = v + x\frac{dv}{dx}$ and $\frac{dy}{dx} = F(\frac{y}{x}) = F(v)$, we have $v + x\frac{dv}{dx} = F(v)$. It can be rewritten as $x\frac{dv}{dx} = F(v) v$ which can be solved by $\int \frac{dv}{F(v) v} = \int \frac{dx}{x}$.
 - (b) The equation $x^2 \frac{dy}{dx} = y^2 + xy x^2$ can be simplified as $\frac{dy}{dx} = \frac{y^2 + xy x^2}{x^2} = (\frac{y}{x})^2 + \frac{y}{x} 1$. Let $v = \frac{y}{x}$. Note that $(\frac{y}{x})^2 + \frac{y}{x} - 1 = v^2 + v - 1$. Following the same computation as above, we have $x\frac{dv}{dx} = v^2 - 1$. It can be solved by $\int \frac{dv}{v^2 - 1} = \int \frac{dx}{x}$. Note that $\int \frac{dv}{v^2 - 1} = \int \frac{1}{2(v-1)} - \frac{1}{2(v+1)} dv = \frac{1}{2} \ln |\frac{v-1}{v+1}| + D$. Hence $\frac{1}{2} \ln |\frac{v-1}{v+1}| = \ln |x| + C$ and $\ln |\frac{v-1}{v+1}| = 2 \ln |x| + c = \ln |x|^2 + c$. Therefore $\frac{v-1}{v+1} = Cx^2$ and $v = \frac{1+Cx^2}{1-Cx^2}$. Recall that $v = \frac{y}{x}$. It follows that $y = xv = x \cdot \frac{1+Cx^2}{1-Cx^2}$.
- (4) (a) Separate the equation, we have $\int (3y^2 6y)dy = \int 2xdx$ and $y^3 3y^2 = x^2 + C$. Plugging y(0) = 1, we have C = -2 Thus the solution (x, y) satisfies $y^3 - 3y^2 = x^2 - 2$. From the equation $y' = \frac{2x}{3y^2 - 6y}$, we know that the solution y will not exist if $3y^2 - 6y = 3y(y-2) = 0$, that is y = 0 and y = 2. If y = 0, we have $0 = x^2 - 2$, i.e. $x = \pm\sqrt{2}$. From the graph in Figure 3, we know that the solution exists on the interval $-\sqrt{2} < x < \sqrt{2}$.
- (b) Using y³ 3y² = x² + C and y(√18) = 4, we have 64 48 = 18 + C and C = -2. So the solution (x, y) satisfies y³ 3y² = x² 2. From the graph of y³ 3y² = x² 2, we know that the solution exists on the interval -∞ < x < ∞.
 (5) Solve the following equations.
 - (a) $y(t) = \frac{2t}{3} + \frac{1}{9} + Ce^{-3t}$. Thus $\lim_{t \to \infty} y(t) \frac{2t}{3} \frac{1}{9} = 0$.

- (b) $y(t) = -\frac{1}{2}\cos(t) + \frac{1}{2}\sin(t) + (y_0 + \frac{1}{2})e^t$ If $y_0 = -\frac{1}{2}$ then the solution remains finite as $t \to \infty$. We have used the fact that $\lim_{t\to\infty} e^{3t} = \infty$.
- (c) $y(t) = \frac{1}{4}e^{-t} + (y_0 \frac{1}{4})e^{3t}$. Note that $\lim_{t\to\infty} e^{3t} = \infty$ and $\lim_{t\to\infty} e^{-t} = 0$. The condition $y_0 < \frac{1}{4}$ will imply that $\lim_{t\to\infty} y(t) = -\infty$. (d) $y(t) = 2 + \frac{C}{(t^2+1)^{\frac{3}{2}}}$. Hence $\lim_{t\to\infty} y(t) = 2$.
- (e) $y(t) = t^3 \ln|t| + Ct^3$.
- (f) $y(t) = \frac{2e^t + C}{t}$.
- (g) $y(t) = \frac{t^2+t}{\sqrt{2t+1}} + \frac{C}{\sqrt{2t+1}}$. Note that the integrating factor is $\mu(t) = e^{\int \frac{1}{2t+1}dt} =$ $e^{\frac{1}{2}\ln|2t+1|} = e^{\ln|2t+1|^{\frac{1}{2}}} = |2t+1|^{\frac{1}{2}}.$
- (h) Let $v = y^{1-\frac{2}{3}} = y^{\frac{1}{3}}$. Then we have $v' \frac{2}{t}v = 4t^3$ and $v(t) = 2t^4 + Ct^2$. Using $y = v^3$, we get $y = v^3 = (2t^4 + Ct^2)^3$.
- (i) This can be rewritten as $\frac{dy}{dx} = 5x^4y^2 4x^2y^2 = y^2(5x^4 4x^2)$. The general solution is $y = \frac{-1}{x^5 - \frac{4}{3}x^3 + C}$.
- (j) Let $P = 6xy + 2y^2$ and $Q = 9x^2 + 8xy + y$. Note that $P_y = 6x + 4y$ and $Q_x = 18x + 8y$. This equation is not exact. Let $\mu = \mu(x, y)$ be the integrating factor. $\mu(6xy + 2y^2) + \mu(9x^2 + 8xy + y)\frac{dy}{dx} = 0$ is exact if $(\mu(6xy + 2y^2))_y =$ $(\mu(9x^2+8xy+y))_x$, i.e. $\mu_y(6xy+2y^2)+\mu(6x+4y) = \mu_x(9x^2+8xy+y)+\mu(18x+8y)$. This can be simplified as $\mu_y 2y(3x+y) - \mu_x(9x^2+8xy+y) = 4\mu(3x+y)$ Hence there exists $\mu = \mu(y)$ which is a solution of $\mu_y 2y(3x+y) = 4\mu(3x+y)$. This is the same as $\frac{d\mu}{dy} = \frac{2\mu}{y}$. Thus $\mu = y^2$. Now $y^2(6xy + 2y^2) + y^2(9x^2 + 8xy + y)\frac{dy}{dx} = 0$ Solving $F_x = y^2(6xy + 2y^2) = 6xy^3 + 2y^4$ and $F_y = y^2(9x^2 + 8xy + y) = 9x^2y^2 + 8xy^3 + y^3$. We have $F(x, y) = 3x^2y^3 + 2xy^4 + \frac{y^4}{4} = C$.
- (k) This is a exact equation. We have $xe^y + \sin(x)y + e^y = C$.
- (l) There is a typo in this problem. This problem should be $\frac{dy}{dx} = (x+y)^2 1$. Let v = x + y. We have $\frac{dv}{dx} = 1 + \frac{dy}{dx} = 1 + (x + y)^2 - 1 = v^2$ Thus $\int \frac{dv}{v^2} = \int dx$, $-\frac{1}{v} = x + c$ and $v = -\frac{1}{x+c}$. Recall that v = x + y. Hence $y + x = -\frac{1}{x+c}$ and $y = -x - \frac{1}{x+c}.$
- (m) The equation $2x^2y x^3\frac{dy}{dx} = y^3$ can be written as a homogeneous equation $\frac{dy}{dx} = \frac{-y^3 + 2x^2y}{x^3} = -\left(\frac{y}{x}\right)^3 + 2\frac{y}{x}. \text{ Let } v = \frac{y}{x}. \text{ After simplification, we have } \int \frac{dv}{-v^3 + v} = \int dx. \text{ By partial fraction, we have } \frac{1}{-v^3 + v} = \frac{1}{v} - \frac{1}{2(v-1)} - \frac{1}{2(v+1)} \text{ and } \int \frac{dv}{-v^3 + v} = \ln |v| - \frac{1}{2} \ln |v^2 - 1| + C_1. \text{ We have } \ln |v| - \frac{1}{2} \ln |v^2 - 1| = x + C. \text{ Substituting}$
- $v = \frac{y}{x}, \ln |\frac{y}{x}| \frac{1}{2} \ln |\frac{y^2}{x^2} 1| = x + C$ (n) The equation $\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2$ can be written as a separable equation $\frac{dy}{dx} = 1 + x^2 + y^2(1 + x^2) = (1 + x^2)(1 + y^2)$. Solving $\int \frac{dy}{1 + y^2} = \int (1 + x^2) dx$, we get $\arctan(y) = x + \frac{x^3}{2} + C$ and $y = \tan(x + \frac{x^3}{2} + C)$.

- (6) Using separation of variables, we have $y(t) = \left(\frac{1}{-3t + \frac{1}{y_0^3}}\right)^{\frac{1}{3}}$. Note that $\frac{1}{3y_0^3} > 0$. We have $\lim_{t \to \left(\frac{1}{3y_0^3}\right)^-} y(t) = \infty$.
- (7) Obviously, $y_1(t) = 0$ is a solution of $\frac{dy}{dt} = \frac{y \sin(x)}{1+t^2+y^2}$. Now we have $y(0) = -2 < 0 = y_1(0)$. Obviously, the solution to $\frac{dy}{dt} = \frac{y \sin(x)}{1+t^2+y^2}$ is unique. We have $y(t) < y_1(0) = 0$, i.e. y is always negative.
- (8) The equation $(9 t^2)\frac{dy}{dt} + \frac{y}{t} = \cos(t)$ can be rewritten as $\frac{dy}{dt} + \frac{1}{t(3-t)(3+t)}y = \frac{\cos(t)}{(3-t)(3+t)}$. Both $\frac{1}{t(3-t)(3+t)}$ and $\frac{\cos(t)}{(3-t)(3+t)}$ are continuous on $(-\infty, -3) \cup (-3, 0) \cup (0, 3) \cup (0, \infty)$. (a) Since $-1 \in (-3, 0)$, this solution exists on the interval (-3, 0).
 - (b) Since $1 \in (0,3)$, this solution exists on the interval (0,3).
 - (c) Since $4 \in (3, \infty)$, this solution exists on the interval $(3, \infty)$.
 - (d) Since $-4 \in (-\infty, -3)$, this solution exists on the interval $(-\infty, -3)$.
- (9) In each problem, determine the equilibrium points, and classify each one as asymptotically stable, unstable, or semistable.
 - (a) The equilibrium points are $y = k\pi$ where k is an integer. Since $y^2 \sin^2(y) > 0$ if $y \neq k\pi$, we know that all the equilibrium points are semistable.
 - (b) The equilibrium points are $y = k\pi$ where k is an integer. The sign graph of $y\sin(y)$ and $\sin(y)$ is the same when y > 0. The sign graph of $y\sin(y)$ and $-\sin(y)$ is the same when y < 0. Thus $y\sin(y) > 0$ when $2k\pi < y <$ $(2k + 1)\pi$ or $-(2k + 1)\pi < y < -2k\pi$ where k is an nonnegative integer. Thus $y\sin(y) < 0$ when $(2k + 1)\pi < y < (2k + 2)\pi$ or $-(2k + 2)\pi < y <$ $-(2k + 1)\pi$ where k is an nonnegative integer. Thus 0 is an semistable equilibrium point. $\{\pi, 3\pi, 5\pi, \cdots\}$ and $\{-2\pi, -4\pi, -6\pi, \cdots\}$ are asymptotically stable equilibrium points. $\{2\pi, 4\pi, 6\pi, \cdots\}$ and $\{-\pi, -3\pi, -5\pi, \cdots\}$ are unstable equilibrium points.
 - (c) Let $f(y) = (-y^3 + 3y^2 2y)(y 3)^2$. We have $f(y) = -y(y^2 3y + 2)(y 3)^2 = -y(y 1)(y 2)(y 3)^2$. Thus f(y) > 0 when $y \in (-\infty, 0) \cup (1, 2)$ and f(y) < 0 when $y \in (0, 1) \cup (2, 3) \cup (3, \infty)$. Therefore $\{0, 2\}$ are are asymptotically stable equilibrium points, 1 is an unstable equilibrium point and 3 is a semistable equilibrium point.
 - (d) Let $f(y) = y^3 3y^2 + 2y = y(y-1)(y-2)$. Thus f(y) > 0 when $y \in (0,1) \cup (2,\infty)$ and f(y) < 0 $y \in (-\infty, 0) \cup (1, 2)$. Hence y = 1 are are asymptotically stable equilibrium points, y = 0 and y = 2 are unstable equilibrium points.
- (10) (a) Let $f(y) = \frac{y^2(y-2)}{y-1}$. We have f(y) > 0 if $y \in (0,1) \cup (2,\infty) \cup (-\infty,0)$ and f(y) < 0 if $y \in (1,2)$. Note that y = 0 and y = 2 are equilibrium solutions. The graph of y has a vertical tangent line when y = 1. Let y(t) be the solution to $\frac{dy}{dt} = \frac{y^2(y-2)}{y-1}$ with $y(0) = y_0$. If $y_0 > 2$, y(t) is increasing and it will escape

to ∞ . If $1 < y_0 < 2$, y(t) is will decrease to 1 in a finite time with a vertical tangent line when y = 1. If $0 < y_0 < 1$, y(t) will increase to 1 in a finite time with vertical a vertical tangent line when y = 1. If $y_0 < 0$, y(t) is increasing and $\lim_{t\to\infty} y(t) = 0$.

- (b) $\frac{dy}{dt} = \frac{(y^2-4)}{y-1}$ Let $f(y) = \frac{(y^2-4)}{y-1}$. We have f(y) > 0 if $y \in (-2, 1) \cup (2, \infty)$ and f(y) < 0 if $y \in (1, 2) \cup (-\infty, -2)$. Note that y = -2 and y = 2 are equilibrium solutions. The graph of y has a vertical tangent line when y = 1. Let y(t) be the solution to $\frac{dy}{dt} = \frac{(y^2-4)}{y-1}$ with $y(0) = y_0$. If $y_0 > 2$, y(t) is increasing and it will escape to ∞ . If $1 < y_0 < 2$, y(t) is will decrease to 1 in a finite time with a vertical tangent line when y = 1. If $-2 < y_0 < 1$, y(t) will increase to 1 in a finite time with vertical a vertical tangent line when y = 1. If $y_0 < -2$, y(t) is decreasing and it will escape to $-\infty$.
- (11) Since $\frac{dy}{dt} = 4y y^2$, we have $\frac{d^2y}{dt^2} = \frac{d}{dt}(y') = \frac{d}{dt}(4y y^2) = (4y' 2yy') = (4 2y)y' = (4 2y)(4y y^2) = 2y(1 y)(2 y)$. Since $\frac{d^2y}{dt^2} = 2y(1 - y)(2 - y)$, we have $\frac{d^2y}{dt^2} > 0$ if $y \in (0, 1) \cup (2, \infty)$ and $\frac{d^2y}{dt^2} < 0$ if $y \in (-\infty, 0) \cup (1, 2)$. Note that $\frac{dy}{dt} > 0$ if $y \in (0, 4)$ and $\frac{dy}{dt} < 0$ if $y \in (-\infty, 0) \cup (4, \infty)$.