Review Problems for Midterm III

(1) Find the general solution of the following differential equations.
(a) $y^{(6)}(t)+64 y(t)=0$.
(b) $y^{(3)}(t)+3 y^{(2)}(t)+2 y^{\prime}(t)=0$.
(c) $y^{(4)}(t)-8 y^{(2)}(t)+16 y=0$.
(d) $y^{(6)}(t)+2 y^{(3)}(t)+y(t)=0$.
(e) $\left(D^{2}-4 D+13\right)^{2}(D-2)^{2} y(t)=0$.
(2) Use the method of Annihilators to find the form of particular solution of the following problems.
(a) $\left(D^{3}-2 D^{2}+D\right) y=t+\cos (t)+t \sin (t)+t^{2} e^{t}$.
(b) $\left(D^{3}+D\right) y=t+\cos (t)+t \sin (t)+t^{2} e^{t}$.
(c) $y^{\prime \prime}(t)+2 y^{\prime}(t)+2 y(t)=3 t e^{-t} \cos (t)$.
(3) Use Laplace's transform to find the solution of the following initial value problems.
(a) $y^{(3)}(t)-3 y^{(2)}(t)+2 y^{\prime}(t)=e^{4 t}$ with $y(0)=1, y^{\prime}(0)=0$ and $y^{\prime \prime}(0)=0$.
(b) $y^{\prime \prime}(t)+y(t)=\sin (2 t)$ with $y(0)=0, y^{\prime}(0)=0$.
(c) $y^{\prime \prime}(t)+4 y=g(t)$ with $y(0)=0$ and $y^{\prime}(0)=0$ where

$$
g(t)=\left\{\begin{array}{l}
0, \quad 0 \leq t<2 \\
3(t-2), 2 \leq t<4 \\
6,4 \leq t
\end{array}\right.
$$

(d) $y^{\prime \prime}(t)+4 y^{\prime}(t)+4 y=g(t)$ with $y(0)=0$ and $y^{\prime}(0)=0$ where

$$
g(t)=\left\{\begin{array}{l}
0,0 \leq t<2 \\
3(t-2), 2 \leq t<4 \\
6,4 \leq t
\end{array}\right.
$$

(e) $y^{\prime \prime}(t)+4 y^{\prime}(t)+5 y=g(t)$ with $y(0)=0$ and $y^{\prime}(0)=0$ where

$$
g(t)=\left\{\begin{array}{l}
0,0 \leq t<2 \\
1,2 \leq t<4 \\
0,4 \leq t
\end{array}\right.
$$

(f) $y^{\prime \prime}(t)+5 y^{\prime}(t)+4 y(t)=\delta(t-2)$, with $y(0)=1$ and $y^{\prime}(0)=1$.
(g) $y^{\prime \prime}(t)+4 y^{\prime}(t)+5 y(t)=\delta(t-2)$, with $y(0)=0$ and $y^{\prime}(0)=0$.
(h) $y^{\prime \prime}(t)-4 y^{\prime}(t)+4 y(t)=\delta(t-2)$, with $y(0)=0$ and $y^{\prime}(0)=0$.
(4) Express the solution of the given initial value problem in terms of the convolution integral.
(a) $y^{\prime \prime}(t)+4 y^{\prime}(t)+5 y(t)=e^{2 t} \cos (t)$, with $y(0)=0$ and $y^{\prime}(0)=0$.
(b) $y^{\prime \prime}(t)-2 y^{\prime}(t)+y(t)=t e^{t}$, with $y(0)=0$ and $y^{\prime}(0)=0$.
(c) $y^{\prime \prime}(t)-3 y^{\prime}(t)+2 y(t)=t e^{t}+t e^{2 t}$, with $y(0)=0$ and $y^{\prime}(0)=0$.

