(1) Use Laplace transform to find the solution of the following problems

(a) $y'' + 4y' + 5y = \cos(2t) + \sin(2t)$ with y(0) = 2 and y'(0) = 2

(b) $y'' + 4y' + 4y = 3e^{-2t}$ with y(0) = 2 and y'(0) = -1. Solution:

(a) Taking the Laplace's transform of the differential equation

 $y'' + 4y' + 5y = \cos(2t) + \sin(2t)$, we have
$$\begin{split} & L(y''+4y'+5y) = L(\cos(2t)+\sin(2t)) = \frac{s}{s^2+4} + \frac{2}{s^2+4} = \frac{s+2}{s^2+4}.\\ & \text{Using } L(y'') = s^2 L(y) - sy(0) - y'(0) \text{ and } L(y') = sL(y) - y(0), \end{split}$$
we have

 $s^{2}L(y) - sy(0) - y'(0) + 4(sL(y) - y(0)) + 5L(y) = \frac{s+2}{s^{2}+4}$ and $(s^{2} + 4s + 5)L(y) - sy(0) - y'(0) - 4y(0) = \frac{s+2}{s^{2}+4}.$ Substituting y(0) = 2 and y'(0) = -1, we have $(s^{2} + 4s + 5)L(y) - s \cdot 2 - (-1) - 4 \cdot 2 = \frac{s+2}{s^{2}+4} \text{ and } (s^{2} + 4s + 5)L(y) = 2s + 7 + \frac{s+2}{s^{2}+4}.$ So $L(y) = \frac{2s+7}{s^{2}+4s+5} + \frac{s+2}{(s^{2}+4s+5)(s^{2}+4)}.$ Note that $s^{2} + 4s + 5 = (s + 2)^{2} + 1$. First, we simplify the term $\frac{2s+7}{s^{2}+4s+5}$. We can use the substitution u = s + 2 and s = u - 2 to get

and s = u - 2 to get

$$\frac{2s+7}{s^2+4s+5} = \frac{2s+7}{(s+2)^2+1} = \frac{2(u-2)+7}{u^2+1} = \frac{2u+3}{u^2+1}$$
$$= 2\frac{u}{u^2+1} + \frac{3}{u^2+1} = 2\frac{(s+2)}{(s+2)^2+1} + \frac{3}{(s+2)^2+1}.$$

Now we simplify the term $\frac{s+2}{(s^2+4s+5)(s^2+4)}$ by partial fraction. We have

 $\frac{s+2}{(s^2+4s+5)(s^2+4)} = \frac{s+2}{((s+2)^2+1)(s^2+4)} = \frac{a(s+2)+b}{(s+2)^2+1} + \frac{cs+d}{s^2+4}.$ Multiplying $((s+2)^2+1)(s^2+4)$, we have $s + 2 = (a(s + 2) + b)(s^{2} + 4) + (cs + d)((s + 2)^{2} + 1)$ $= (as + (2a + b))(s^{2} + 4) + (cs + d)(s^{2} + 4s + 5)$ = $as^{3} + (2a+b)s^{2} + 4as + (8a+4b) + cs^{3} + ds^{2} + 4cs^{2} + 4ds + 5cs + 5d$ $= (a+c)s^{3} + ((2a+b)+d+4c)s^{2} + (4a+4d+5c)s + (8a+4b+5d).$ Comparing the coefficient, we get a+c = 0, 2a+b+4c+d =0, 4a + 5c + 4d = 1 and 8a + 4b + 5d = 2. From a + c = 0, we have c = -a, -2a+b+d = 0, -a+4d = 1 and 8a+4b+5d = 2. Multiplying -4 to -2a+b+d=0, we get 8a-4b-4d=0. Adding 8a + 4b + 5d = 2, we have 16a + d = 2. Using -a + 4d = 1 and 16a + d = 2, we have $a = \frac{7}{65}$ and $d = \frac{18}{65}$. From -2a + b + d = 0 and c = -a, we get $b = 2a - d = \frac{-4}{65}$

and
$$c = -\frac{7}{65}$$
. Hence

$$\frac{s+2}{(s^2+4s+5)(s^2+4)} = \frac{7}{65}\frac{(s+2)}{(s+2)^2+1} - \frac{4}{65}\frac{1}{(s+2)^2+1} - \frac{7}{65}\frac{s}{s^2+4} + \frac{18}{65}\frac{1}{s^2+4}.$$
From $L(y) = \frac{2s+7}{s^2+4s+5} + \frac{s+2}{(s^2+4s+5)(s^2+4)},$

$$\frac{2s+7}{s^2+4s+5} = 2\frac{(s+2)}{(s+2)^2+1} + \frac{3}{(s+2)^2+1} \text{ and}$$

$$\frac{s+2}{(s^2+4s+5)(s^2+4)} = \frac{7}{65}\frac{(s+2)}{(s+2)^2+1} - \frac{4}{65}\frac{1}{(s+2)^2+1} - \frac{7}{65}\frac{s}{s^2+4} + \frac{18}{65}\frac{1}{s^2+4}, \text{ we}$$
get
$$L(y) = \frac{137}{(55}\frac{(s+2)}{(s+2)^2+1} + \frac{191}{65}\frac{1}{(s+2)^2+1} - \frac{7}{65}\frac{s}{s^2+4} + \frac{18}{65}\frac{1}{s^2+4} \text{ and } y(t) = \frac{137}{65}L^{-1}(\frac{(s+2)}{(s+2)^2+1}) + \frac{191}{65}L^{-1}(\frac{1}{(s+2)^2+1}) - \frac{7}{65}L^{-1}(\frac{s}{s^2+4}) + \frac{18}{65}L^{-1}(\frac{1}{s^2+4}) = \frac{137}{65}e^{-2t}\cos(t) + \frac{191}{65}e^{-2t}\sin(t) - \frac{7}{65}\cos(2t) + \frac{9}{65}\sin(2t).$$
Note that we have used the fact that $L^{-1}(\frac{(s+2)}{(s+2)^2+1}) = e^{-2t}\cos(t),$

$$L^{-1}(\frac{1}{(s+2)^2+1}) = e^{-2t}\sin(t), L^{-1}(\frac{s}{(s^2+4)}) = \cos(2t)$$
and $L^{-1}(\frac{1}{s^2+4}) = \frac{1}{2}\sin(2t).$

(b)

Taking the Laplace's transform of the differential equation $y'' + 4y' + 4y = 3e^{-2t}$, we have $L(y'' + 4y' + 4y) = L(3e^{-2t})$. Using $L(y'') = s^2L(y) - sy(0) - y'(0)$, L(y') = sL(y) - y(0) and $L(3e^{-2t}) = 3L(e^{-2t}) = \frac{3}{s+2}$, we have $s^2L(y) - sy(0) - y'(0) + 4(sL(y) - y(0)) + 4L(y) = \frac{3}{s+2}$ and $(s^2 + 4s + 4)L(y) - sy(0) - y'(0) - 4y(0) = \frac{4}{s+2}$. Substituting y(0) = 2 and y'(0) = -1, we have $(s^2 + 4s + 4)L(y) - s \cdot 2 - (-1) - 4 \cdot 2 = \frac{3}{s+2}$ and $(s^2 + 4s + 4)L(y) = \frac{3}{s+2} + 2s + 7$. Note that $s^2 + 4s + 4 = (s + 2)^2$. So we have $(s + 2)^2L(y) = \frac{3}{s+2} + 2s + 7$ and $L(y) = \frac{3}{(s+2)^3} + \frac{2s+7}{(s+2)^2}$. We can simplify $\frac{2s+7}{(s+2)^2}$ by substituting u = s + 2, s = u - 2and $\frac{2s+7}{(s+2)^2} = \frac{2(u-2)+7}{u^2} = \frac{2u+3}{u^2} = \frac{2}{u} + \frac{3}{u^2} = \frac{2}{(s+2)} + 3 \cdot \frac{1}{(s+2)^2}$. Hence we have $L(y) = \frac{3}{(s+2)^3} + \frac{2}{(s+2)} + 3 \cdot \frac{1}{(s+2)^2}$ and $y = L^{-1}(\frac{3}{(s+2)^3} + \frac{2}{(s+2)} + 3\frac{1}{(s+2)^2})$. Using $L(e^{-2t}) = \frac{1}{s+2}$, $L(te^{-2t}) = \frac{1}{(s+2)^2}$, and $L(t^2e^{-t}) = \frac{2}{(s+2)^3}$, we have $L^{-1}(\frac{1}{s+2}) = e^{-2t}$, $L^{-1}(\frac{1}{(s+2)^2}) = te^{-2t}$ and $L^{-1}(\frac{1}{(s+2)^3}) = \frac{t^2e^{-t}}{2}$. Therefore $y = L^{-1}(\frac{3}{(s+2)^3} + \frac{2}{(s+2)} + \frac{3}{(s+2)^2})$

 $= 3 \cdot \frac{t^2 e^{-2t}}{2} + 2e^{-2t} + 3te^{-t} = \frac{3}{2}t^2 e^{-2t} + 2e^{-2t} + 3te^{-2t}.$

2