Solutions to HW 11

(1) (Sec 6.2 Problem 21) $y^{\prime \prime}-2 y^{\prime}+2 y=\cos (t) . y(0)=1, y^{\prime}(0)=0$

Taking the Laplace's transform of the differential equation
$y^{\prime \prime}-2 y^{\prime}+2 y=\cos (t)$, we have
$L\left(y^{\prime \prime}-2 y^{\prime}+2 y\right)=L(\cos (t))=\frac{s}{s^{2}+1}$. Using $L\left(y^{\prime \prime}\right)=s^{2} L(y)-s y(0)-y^{\prime}(0)$ and $L\left(y^{\prime}\right)=s L(y)-y(0)$, we have
$s^{2} L(y)-s y(0)-y^{\prime}(0)-2(s L(y)-y(0))+2 L(y)=\frac{s}{s^{2}+1}$ and
$\left(s^{2}-2 s+2\right) L(y)-s y(0)-y^{\prime}(0)+2 y(0)=\frac{s}{s^{2}+1}$.
Substituting $y(0)=1$ and $y^{\prime}(0)=0$, we have
$\left(s^{2}-2 s+2\right) L(y)-s+2=\frac{s}{s^{2}+1}$ and
$\left(s^{2}-2 s+2\right) L(y)=s-2+\frac{s}{s^{2}+1}$.
So $L(y)=\frac{s-2}{s^{2}-2 s+2}+\frac{s}{\left(s^{2}-2 s+2\right)\left(s^{2}+1\right)}$.
Note that $s^{2}-2 s+2=(s-1)^{2}+1$. First, we simplify the term by noting that $\frac{s-2}{s^{2}-2 s+2}=\frac{s-2}{(s-1)^{2}+1}=\frac{-1}{(s-1)^{2}+1}+\frac{3}{(s-1)^{2}+1}$.

Now we simplify the term $\frac{s}{\left(s^{2}-2 s+2\right)\left(s^{2}+1\right)}$ by partial fraction. We have
$\frac{s}{\left(s^{2}-2 s+2\right)\left(s^{2}+1\right)}=\frac{s}{\left((s-1)^{2}+1\right)\left(s^{2}+1\right)}=\frac{a(s-1)+b}{(s-1)^{2}+1}+\frac{c s+d}{s^{2}+1}$. Multiplying $\left((s-1)^{2}+1\right)\left(s^{2}+1\right)$, we have
$s=(a(s-1)+b)\left(s^{2}+1\right)+(c s+d)\left((s-1)^{2}+1\right)$
$=(a s+(-a+b))\left(s^{2}+1\right)+(c s+d)\left(s^{2}-2 s+2\right)$
$=a s^{3}+(-a+b) s^{2}+a s+(-a+b)+c s^{3}+d s^{2}-2 c s^{2}-2 d s+2 c s+2 d$
$=(a+c) s^{3}+((-a+b)+d-2 c) s^{2}+(a-2 d+2 c) s+(-a+b+2 d)$. Comparing the coefficient, we get $a+c=0,-a+b+d-2 c=0, a-2 d+2 c=1$ and $-a+b+2 d=0$. From $a+c=0$, we have $c=-a, a+b+d=0,-a-2 d=1$ and $-a+b+2 d=0$. Multiplying -1 to $a+b+d=0$, we get $-a-b-d=0$. Adding $-a+b+2 d=0$, we have $-2 a+d=0$. Using $-a-2 d=1$ and $-2 a+d=0$, we have $a=-\frac{1}{5}$ and $d=-\frac{2}{5}$. From $a+b+d=0$ and $c=-a$, we get $b=-a-d=\frac{3}{5}$ and $c=\frac{1}{5}$. Hence
$\frac{s}{\left(s^{2}-2 s+1\right)\left(s^{2}+1\right)}=-\frac{1}{5} \frac{(s-1)}{(s-1)^{2}+1}+\frac{3}{5} \frac{1}{(s-2)^{2}+1}+\frac{1}{5} \frac{s}{s^{2}+1}-\frac{2}{5} \frac{1}{s^{2}+1}$.
From $L(y)=\frac{s-2}{s^{2}-2 s+2}+\frac{s}{\left(s^{2}-2 s+2\right)\left(s^{2}+1\right)}$,
$\frac{s-2}{s^{2}-2 s+2}=\frac{s-1}{(s-1)^{2}+1}+\frac{-1}{(s-1)^{2}+1}$ and
$\frac{s}{\left(s^{2}-2 s+1\right)\left(s^{2}+1\right)}=-\frac{1}{5} \frac{(s-1)}{(s-1)^{2}+1}+\frac{3}{5} \frac{1}{(s-2)^{2}+1}+\frac{1}{5} \frac{s}{s^{2}+1}-\frac{2}{5} \frac{1}{s^{2}+1}$, we get
$L(y)=\frac{4}{5} \frac{(s-1)}{(s-1)^{2}+1}-\frac{2}{5} \frac{1}{(s-1)^{2}+1}+\frac{1}{5} \frac{s}{s^{2}+1}-\frac{2}{5} \frac{1}{s^{2}+1}$ and
$y(t)=\frac{4}{5} e^{t} \cos (t)-\frac{2}{5} e^{t} \sin (t)+\frac{1}{5} \cos (t)-\frac{2}{5} \sin (t)$.
(2) (Sec 6.2 Problem 23) $y^{\prime \prime}+2 y^{\prime}+y=4 e^{-t} y(0)=2, y^{\prime}(0)=-1$

Taking the Laplace's transform of the differential equation $y^{\prime \prime}+2 y^{\prime}+y=4 e^{-t}$, we have $L\left(y^{\prime \prime}+2 y^{\prime}+y\right)=L\left(4 e^{-t}\right)$. Using $L\left(y^{\prime \prime}\right)=s^{2} L(y)-s y(0)-y^{\prime}(0), L\left(y^{\prime}\right)=$ $s L(y)-y(0)$ and $L\left(4 e^{-t}\right)=4 L\left(e^{-t}\right)=\frac{4}{s+1}$, we have
$s^{2} L(y)-s y(0)-y^{\prime}(0)+2(s L(y)-y(0))+L(y)=\frac{4}{s+1}$ and
$\left(s^{2}+2 s+1\right) L(y)-s y(0)-y^{\prime}(0)-2 y(0)=\frac{4}{s+1}$.
Substituting $y(0)=2$ and $y^{\prime}(0)=-1$, we have
$\left(s^{2}+2 s+1\right) L(y)-s \cdot 2-(-1)-2 \cdot 2=\frac{4}{s+1}$ and $\left(s^{2}+4 s+4\right) L(y)=\frac{4}{s+1}+2 s+3$. Note that $s^{2}+2 s+1=(s+1)^{2}$. So we have $(s+1)^{2} L(y)=\frac{4}{s+1}+2 s+3$ and $L(y)=\frac{4}{(s+1)^{3}}+\frac{2 s+3}{(s+1)^{2}}$. We can simplify $\frac{2 s+3}{(s+1)^{2}}$ by substituting $u=s+1, s=u-1$ and $\frac{2 s+3}{(s+1)^{2}}=\frac{2(u-1)+3}{u^{2}}=\frac{2 u+1}{u^{2}}=\frac{2}{u}+\frac{1}{u^{2}}=\frac{2}{(s+1)}+\frac{1}{(s+1)^{2}}$.

Hence we have $L(y)=\frac{4}{(s+1)^{3}}+\frac{2}{(s+1)}+\frac{1}{(s+1)^{2}}$ and $y=L^{-1}\left(\frac{4}{(s+1)^{3}}+\frac{2}{(s+1)}+\frac{1}{(s+1)^{2}}\right)$.
$\operatorname{Using} L\left(e^{-t}\right)=\frac{1}{s+1}, L\left(t e^{-t}\right)=\frac{1}{(s+1)^{2}}$, and $L\left(t^{2} e^{-t}\right)=\frac{2}{(s+1)^{3}}$,
we have $L^{-1}\left(\frac{1}{s+1}\right)=e^{-t}, L^{-1}\left(\frac{1}{(s+1)^{2}}\right)=t e^{-t}$ and $L^{-1}\left(\frac{1}{(s+1)^{3}}\right)=\frac{t^{2} e^{-t}}{2}$.
Therefore

$$
\begin{aligned}
& y=L^{-1}\left(\frac{4}{(s+1)^{3}}+\frac{2}{(s+1)}+\frac{1}{(s+1)^{2}}\right) \\
& =4 \cdot \frac{t^{2} e^{-t}}{2}+2 e^{-t}+t e^{-t}=2 t^{2} e^{-t}+2 e^{-t}+t e^{-t} .
\end{aligned}
$$

(3) (Sec 6.3 Problem 8)

$$
f(t)=\left\{\begin{array}{l}
0, \quad 0 \leq t<1 \\
t^{2}-2 t+2,1 \leq t
\end{array}\right.
$$

We have $f(t)=\left(t^{2}-2 t+2\right) u_{1}(t)$. Let $g(t-1)=t^{2}-2 t+2=(t-1)^{2}+1$. Then $g(t)=g((t+1)-1)=t^{2}-1$ and $f(t)=u_{1}(t) g(t-1)$. Hence $L(f(t))=$ $L\left(u_{1}(t) g(t-1)\right)=e^{-s} L(g(t))=e^{-s} L\left(t^{2}+1\right)=e^{-s}\left(\frac{2}{s^{3}}+\frac{1}{s}\right)$.

Sec 6.3(p330) 9

$$
f(t)=\left\{\begin{array}{l}
0,0 \leq t<\pi \\
t-\pi, \pi \leq t<2 \pi \\
0,2 \pi \leq t
\end{array}\right.
$$

We have $f(t)=(t-\pi) u_{\pi, 2 \pi}(t)=(t-\pi)\left(u_{\pi}(t)-u_{2 \pi}(t)\right)=(t-\pi) u_{\pi}(t)-(t-\pi)\left(u_{2 \pi}(t)\right.$. Let $g(t-\pi)=t-\pi$ and $h(t-2 \pi)=t-\pi$ Then $g(t)=g((t+\pi)-\pi)=t$, $h(t)=h((t+2 \pi)-2 \pi)=t+2 \pi-\pi=t+\pi$ and $f(t)=u_{\pi}(t) g(t-\pi)-u_{2 \pi}(t) g(t-2 \pi)$. Hence $L(f(t))=L\left(u_{\pi}(t) g(t-\pi)-u_{2 \pi}(t) h(t-2 \pi)\right)=e^{-\pi s} L(g(t))-e^{-2 \pi s} L(h(t))=$ $e^{-\pi s} L(t)-e^{-2 \pi s} L(t+\pi)=e^{-\pi s} \frac{1}{s^{2}}-e^{-2 \pi s}\left(\frac{1}{s^{2}}+\pi \frac{1}{s}\right)$.
(4) (Sec 6.4 Problem 1) $y^{\prime \prime}+y=f(t), y(0)=0, y^{\prime}(0)=1$

$$
f(t)=\left\{\begin{array}{l}
1, \quad 0 \leq t<\frac{\pi}{2} \\
0, \frac{\pi}{2} \leq t
\end{array}\right.
$$

We have $f(t)=u_{0}(t)-u_{1}(t)$ and $L(f(t))=\frac{1}{s}-\frac{e^{-s}}{s}$.

Since $L\left(y^{\prime \prime}+y\right)=L(f(t))=\frac{1}{s}-\frac{e^{-s}}{s}$ and $L\left(y^{\prime \prime}+y\right)=\left(s^{2}+1\right) Y(s)-s y(0)-y^{\prime}(0)=$ $\left(s^{2}+1\right) Y(s)-1$, we have $\left(s^{2}+1\right) Y(s)-1=\frac{1}{s}-\frac{e^{-s}}{s},\left(s^{2}+1\right) Y(s)=\frac{1}{s}-\frac{e^{-s}}{s}+1$ and $Y(s)=\frac{1}{s\left(s^{2}+1\right)}-\frac{e^{-s}}{s\left(s^{2}+1\right)}+\frac{1}{\left(s^{2}+1\right)}$. Using partial fraction, we have $\frac{1}{s\left(s^{2}+1\right)}=\frac{1}{s}-\frac{s}{\left(s^{2}+1\right)}$ and $g(t)=L^{-1}\left(\frac{1}{s\left(s^{2}+1\right)}\right)=1-\cos (t)$.

So $y(t)=1-\cos (t)+u_{\frac{\pi}{2}}(t) f\left(t-\frac{\pi}{2}\right)+\sin (t)=1-\cos (t)+u_{\frac{\pi}{2}}(t)\left(1-\cos \left(t-\frac{\pi}{2}\right)+\sin (t)=\right.$ $1-\cos (t)+u_{\frac{\pi}{2}}(t)(1-\sin (t))+\sin (t)$.

Note that we have used the fact that $\cos \left(t-\frac{\pi}{2}\right)=\sin (t)$.

