MATH 3860 Solution to HW 2

FIGURE 1.

- **1.** (Solution to extra problem 1)
 - (a) It seems that that there is a linear solution. Assume y(t) = mt + b. We have y'(t) = m and t-y+1 = t-(mt+b)+1 = (1-m)t-b+1. Hence y'(t) = t - y + 1 if m = (1-m)t - b. The equation m = (1-m)t - b + 1 can be simplified as (1-m)t - b - m + 1 = 0. This implies that 1 - m = 0 and -b - m + 1 = 0. Hence m = 1 and b = 0. So y = t is a solution of y'(t) = t - y + 1.
 - (b) From the graph, it seems that every solution converges to the linear solution, i.e. $\lim_{t\to\infty} y(t) t = 0$.
- **2.** (Solution to extra problem 2) The solution of y'(t) = y(1-y) with $y(0) = y_0$ behaves in the following way.
 - (i) If $y_0 > 1$ then $\lim_{t \to \infty} y(t) = 1$.
 - (ii) If $y_0 = 1$ then y(t) = 1.
 - (iii) If $0 < y_0 < 1$ then $\lim_{t \to \infty} y(t) = 1$.
 - (vi) If $y_0 = 0$ then y(t) = 0.
 - (v) If $y_0 < 0$ then $\lim_{t\to\infty} y(t) = -\infty$.
- **3.** (Sec1.2 (p15) 1b) From $\frac{dy}{dt} = -2y + 5$, we have $\int \frac{dy}{-2y+5} = \int dt$. So $\frac{\ln|-2y+5|}{-2} = t + c$, $-2y + 5 = Ce^{-2t}$ and $y = \frac{-5}{2} + Ce^{-2t}$. Using $y(0) = y_0$, we have $y_0 = \frac{-5}{2} + C$ and $C = y_0 + \frac{5}{2}$. So $y(t) = \frac{-5}{2} + (y_0 + \frac{5}{2})e^{-2t}$. We have $\lim_{t\to\infty} y(t) = \frac{-5}{2}$. See figure 1 for the graph of the solution.

From the graph, it seems that every solution converges to the linear solution, i.e. $\lim_{t\to\infty} y(t) - t = 0$.

MATH 3860: page 1 of 3

FIGURE 2. $\frac{y^2}{2} = x - x^2 + 2$

4. (Sec 2.2 Problem 10). From $\frac{dy}{dx} = \frac{(1-2x)}{y}$, we have $\int y dy = \int (1-2x) dx$. So $\frac{y^2}{2} = x - x^2 + c$. Using y(1) = 2, we get 2 = 1 - 1 + c and c = 2. The solution satisfies $\frac{y^2}{2} = x - x^2 + 2$. So $y^2 = 2(x - x^2 + 2)$ and $y(x) = \pm \sqrt{2(x - x^2 + 2)}$. Because y(1) = 2, we have $y = \sqrt{2(x - x^2 + 2)}$.

From $\frac{dy}{dx} = \frac{(1-2x)}{y}$, we know the solution doesn't exist when y = 0. Using $y^2 = 2(x - x^2 + 2)$ and y = 0, we have $x - x^2 + 2 = 0$. Solving $x - x^2 + 2 = 0$, we get x = 2 and x = -1. So the solution exists if -1 < x < 2.

5. (Sec 2.2 Problem 21). From $\frac{dy}{dx} = \frac{(1+3x^2)}{3y^2-6y}$, we have $\int 3y^2 - 6y dy = \int 1 + 3x^2 dx$. So $y^3 - 3y^2 = x + x^3 + c$. Using y(0) = 1, we get 1 - 3 = 0 + c and c = -2. The solution satisfies $y^3 - 3y^2 = x + x^3 - 2$.

From $\frac{dy}{dx} = \frac{(1+3x^2)}{3y^2-6y}$, we know the solution doesn't exist when $3y^2 - 6y = 3y(y-2) = 0$, i.e. y = 0 or y = 2. Using $y^3 - 3y^2 = x + x^3 - 2$ and y = 0, we have $x + x^3 - 2 = 0$. Factoring $x + x^3 - 2 = 0$, we get $(x - 1)(x^2 + x + 2) = 0$. Thus x = 1 is the only real root of $x + x^3 - 2 = 0$.

Using $y^3 - 3y^2 = x + x^3 - 2$ and y = 2, we have $x + x^3 + 2 = 0$. Factoring $x + x^3 + 2 = 0$, we get $(x + 1)(x^2 - x + 2) = 0$. Thus x = -1 is the only real root of $x + x^3 + 2 = 0$. So the solution exists if -1 < x < 1.

MATH 3860: page 3 of 3

FIGURE 3. $y^3 - 3y^2 = x + x^3 - 2$