## MATH 3860 Solution to HW 2



Figure 1.

1. (Solution to extra problem 1)
(a) It seems that that there is a linear solution. Assume $y(t)=m t+b$. We have $y^{\prime}(t)=m$ and $t-y+1=t-(m t+b)+1=(1-m) t-b+1$. Hence $y^{\prime}(t)=t-y+1$ if $m=(1-m) t-b$. The equation $m=(1-m) t-b+1$ can be simplified as $(1-m) t-b-m+1=0$. This implies that $1-m=0$ and $-b-m+1=0$. Hence $m=1$ and $b=0$. So $y=t$ is a solution of $y^{\prime}(t)=t-y+1$.
(b) From the graph, it seems that every solution converges to the linear solution, i.e. $\lim _{t \rightarrow \infty} y(t)-t=0$.
2. (Solution to extra problem 2) The solution of $y^{\prime}(t)=y(1-y)$ with $y(0)=$ $y_{0}$ behaves in the following way.
(i) If $y_{0}>1$ then $\lim _{t \rightarrow \infty} y(t)=1$.
(ii) If $y_{0}=1$ then $y(t)=1$.
(iii) If $0<y_{0}<1$ then $\lim _{t \rightarrow \infty} y(t)=1$.
(vi) If $y_{0}=0$ then $y(t)=0$.
(v) If $y_{0}<0$ then $\lim _{t \rightarrow \infty} y(t)=-\infty$.
3. (Sec1.2 (p15) 1b) From $\frac{d y}{d t}=-2 y+5$, we have $\int \frac{d y}{-2 y+5}=\int d t$. So $\frac{\ln |-2 y+5|}{-2}=t+c,-2 y+5=C e^{-2 t}$ and $y=\frac{-5}{2}+C e^{-2 t}$. Using $y(0)=y_{0}$, we have $y_{0}=\frac{-5}{2}+C$ and $C=y_{0}+\frac{5}{2}$. So $y(t)=\frac{-5}{2}+\left(y_{0}+\frac{5}{2}\right) e^{-2 t}$. We have $\lim _{t \rightarrow \infty} y(t)=\frac{-5}{2}$. See figure 1 for the graph of the solution.

From the graph, it seems that every solution converges to the linear solution, i.e. $\lim _{t \rightarrow \infty} y(t)-t=0$.

MATH 3860: page 1 of 3


Figure 2. $\frac{y^{2}}{2}=x-x^{2}+2$
4. (Sec 2.2 Problem 10). From $\frac{d y}{d x}=\frac{(1-2 x)}{y}$, we have $\int y d y=\int(1-2 x) d x$. So $\frac{y^{2}}{2}=x-x^{2}+c$. Using $y(1)=2$, we get $2=1-1+c$ and $c=2$. The solution satisfies $\frac{y^{2}}{2}=x-x^{2}+2$. So $y^{2}=2\left(x-x^{2}+2\right)$ and $y(x)= \pm \sqrt{2\left(x-x^{2}+2\right)}$. Because $y(1)=2$, we have $y=\sqrt{2\left(x-x^{2}+2\right)}$.

From $\frac{d y}{d x}=\frac{(1-2 x)}{y}$, we know the solution doesn't exist when $y=0$. Using $y^{2}=2\left(x-x^{2}+2\right)$ and $y=0$, we have $x-x^{2}+2=0$. Solving $x-x^{2}+2=0$, we get $x=2$ and $x=-1$. So the solution exists if $-1<x<2$.
5. (Sec 2.2 Problem 21). From $\frac{d y}{d x}=\frac{\left(1+3 x^{2}\right)}{3 y^{2}-6 y}$, we have $\int 3 y^{2}-6 y d y=\int 1+$ $3 x^{2} d x$. So $y^{3}-3 y^{2}=x+x^{3}+c$. Using $y(0)=1$, we get $1-3=0+c$ and $c=-2$. The solution satisfies $y^{3}-3 y^{2}=x+x^{3}-2$.

From $\frac{d y}{d x}=\frac{\left(1+3 x^{2}\right)}{3 y^{2}-6 y}$, we know the solution doesn't exist when $3 y^{2}-6 y=$ $3 y(y-2)=0$, i.e. $y=0$ or $y=2$. Using $y^{3}-3 y^{2}=x+x^{3}-2$ and $y=0$, we have $x+x^{3}-2=0$. Factoring $x+x^{3}-2=0$, we get $(x-1)\left(x^{2}+x+2\right)=0$. Thus $x=1$ is the only real root of $x+x^{3}-2=0$.

Using $y^{3}-3 y^{2}=x+x^{3}-2$ and $y=2$, we have $x+x^{3}+2=0$. Factoring $x+x^{3}+2=0$, we get $(x+1)\left(x^{2}-x+2\right)=0$. Thus $x=-1$ is the only real root of $x+x^{3}+2=0$. So the solution exists if $-1<x<1$.

MATH 3860: page 3 of 3


Figure 3. $y^{3}-3 y^{2}=x+x^{3}-2$

