## Solution to Quiz \#4 and HW 5

1. (quiz problem, (Sec 2.6 Problem 3)) Determine if the following equation is exact. Find the solution if it is exact.

$$
\left(3 x^{2}-2 x y+2\right) d x+\left(6 y^{2}-x^{2}+3\right) d y=0
$$

Solution: Let $M(x, y)=3 x^{2}-2 x y+2$ and $N(x, y)=6 y^{2}-x^{2}+3$. We have $M_{y}=-2 x$ and $N_{x}=-2 x$. So $M_{y}=N_{x}$ and the given equation is exact. Thus there is a function $\phi(x, y)$ such that $\phi_{x}=M=3 x^{2}-2 x y+2$ and $\phi_{y}=N=6 y^{2}-x^{2}+3$. Integrating the first equation, we have $\phi(x, y)=\int\left(3 x^{2}-2 x y+2\right) d x=x^{3}-x^{2} y+2 x+h(y)$. Using $\phi_{y}=N=$ $6 y^{2}-x^{2}+3$, we have $\frac{\partial\left(x^{3}-x^{2} y+2 x+h(y)\right)}{\partial y}=6 y^{2}-x^{2}+3,-x^{2}+h^{\prime}(y)=6 y^{2}-x^{2}+3$, $h^{\prime}(y)=6 y^{2}+3$ and $h(y)=\int\left(6 y^{2}+3\right) d y=2 y^{3}+3 y$. Hence $\phi(x, y)=$ $x^{3}-x^{2} y+2 x+h(y)=x^{3}-x^{2} y+2 x+2 y^{3}+3 y$ and the solution satisfies $\phi(x, y)=x^{3}-x^{2} y+2 x+2 y^{3}+3 y=c$.
2. (Sec 2.6 Problem 4) $\left(2 x y^{2}+2 y\right)+\left(2 x^{2} y+2 x\right) y^{\prime}=0$

Solution: Let $M(x, y)=2 x y^{2}+2 y$ and $N(x, y)=2 x^{2} y+2 x$. We have $M_{y}=4 x y+2$ and $N_{x}=4 x y+2$. So $M_{y}=N_{x}$ and the given equation is exact. Thus there is a function $\phi(x, y)$ such that $\phi_{x}=M=2 x y^{2}+2 y$ and $\phi_{y}=N=2 x^{2} y+2 x$. Integrating the first equation, we have $\phi(x, y)=$ $\int\left(2 x y^{2}+2 y\right) d x=x^{2} y^{2}+2 x y+h(y)$. Using $\phi_{y}=N=2 x^{2} y+2 x$, we have $\frac{\partial\left(x^{2} y^{2}+2 x y+h(y)\right)}{\partial y}=2 x^{2} y+2 x, 2 x^{2} y+2 x+h^{\prime}(y)=2 x^{2} y+2 x, h^{\prime}(y)=0$ and $h(y)=c$. Hence $\phi(x, y)=x^{2} y^{2}+2 x y+h(y)=x^{2} y^{2}+2 x y+c$ and the solution satisfies $\phi(x, y)=x^{2} y^{2}+2 x y=C$.
3. (Sec 2.6 Problem 16) Determine the value of $b$ such that the following equation is exact, and then solve the equation. $\left(y e^{2 x y}+x\right) d x+b x e^{2 x y} d y=$ 0.

Solution: Let $M(x, y)=y e^{2 x y}+x$ and $N(x, y)=b x e^{2 x y}$. We have $M_{y}=$ $e^{2 x y}+2 x y e^{2 x y}$ and $N_{x}=b e^{2 x y}+2 b x y e^{2 x y}$. So $M_{y}=N_{x}$ if $b=1$. Thus there is a function $\phi(x, y)$ such that $\phi_{x}=M=y e^{2 x y}+x$ and $\phi_{y}=N=x e^{2 x y}$. Integrating the first equation, we have $\phi(x, y)=\int\left(y e^{2 x y}+x\right) d x=\frac{e^{2 x y}}{2}+$ $\frac{x^{2}}{2}+h(y)$. Using $\phi_{y}=N=x e^{2 x y}(\mathbf{b} / \mathrm{c} b=1)$, we have $\frac{\partial\left(\frac{e^{2 x y}}{2}+\frac{x^{2}}{2}+h(y)\right)}{\partial y}=x e^{2 x y}$, $x e^{2 x y}+h^{\prime}(y)=x e^{2 x y}, h^{\prime}(y)=0$ and $h(y)=c$. Hence $\phi(x, y)=\frac{e^{2 x y}}{2}+\frac{x^{2}}{2}+$ $h(y)=\frac{e^{2 x y}}{2}+\frac{x^{2}}{2}+c$ and the solution satisfies $\phi(x, y)=\frac{e^{2 x y}}{2}+\frac{x^{2}}{2}=C$.
4. (Sec 3.1 Problem 10) $y^{\prime \prime}+4 y^{\prime}+3 y=0, y(0)=2$ and $y^{\prime}(0)=-1$.

Solution: Solving $r^{2}+4 r+3=0$, we have $r=-1$ and $r=-3$. So $y(t)=c e^{-t}+d e^{-3 t}$. Using $y(0)=2$, we have $c+d=2$. Now $y^{\prime}(t)=$ $-c e^{-t}-3 d e^{-3 t}$ Using $y^{\prime}(0)=-1$, we have $-c-3 d=-1$. Solving $c+d=2$ and $-c-3 d=-1$, we have $d=-\frac{1}{2}$ and $c=\frac{5}{2}$. Hence $y(t)=\frac{5}{2} e^{-t}-\frac{1}{2} e^{-3 t}$.
5. (Sec 3.1 Problem 21)

Solution: Solving $r^{2}-r-2=0$, we have $r=2$ and $r=-1$. So $y(t)=$ $c e^{2 t}+d e^{-t}$. Using $y(0)=\alpha$, we have $c+d=\alpha$. Now $y^{\prime}(t)=2 c e^{2 t}-d e^{-t}$ Using $y^{\prime}(0)=2$, we have $2 c-d=2$. Solving $c+d=\alpha$ and $2 c-d=-2$, we have $c=\frac{\alpha-2}{3}$ and $d=\frac{2+2 \alpha}{3}$. Hence $y(t)=\left(\frac{\alpha-2}{3}\right) e^{2 t}+\left(\frac{2+2 \alpha}{3}\right) e^{-t}$. Now $\lim _{t \rightarrow \infty} e^{2 t}=\infty$ and $\lim _{t \rightarrow \infty} e^{-t}=0$. So $\lim _{t \rightarrow \infty} y(t)=0$ if $\frac{\alpha-2}{3}=0$, that is $\alpha=2$.
6. (Sec 3.1 Problem 24)

Solution:Solution: Solving $r^{2}+(3-\alpha)-2(\alpha-1)=(r+2)(r-(\alpha-1)$, we have $r=-2$ and $r=\alpha-1$. So $y(t)=c e^{-2 t}+d e^{(\alpha-1) t}$. Now $\lim _{t \rightarrow \infty} e^{-2 t}=0$ and $\lim _{t \rightarrow \infty} e^{(\alpha-1) t}=0$ if $\alpha-1<0$. So $\alpha<1$. One can conclude that if $\alpha<1$ then $\lim _{t \rightarrow \infty} y(t)=0$.

Since $\lim _{t \rightarrow \infty} e^{-2 t}=0$, so $\lim _{t \rightarrow \infty} y(t)=0$. if $d=0$. So we can't find $\alpha$ such that all the solutions become unbounded.

