Solution to Quiz \#5 and HW 6

1. (quiz problem, (Sec 3.2 Problem 9))

Solution: Rewrite the equation as $y^{\prime \prime}+\frac{3}{t-4} y^{\prime}+\frac{4}{t(t-4)} y=\frac{2}{t(t-4)}$. The coefficients are not continous at $t=0$ and $t=4$. Since $t_{0}=3 \in(0,4)$, the largest interval of existence is $0<t<4$.
2. (quiz problem, (Sec 3.3 Problem 15))

Solution: Rewrite the equation as $y^{\prime \prime}-\frac{t+2}{t} y^{\prime}+\frac{t+2}{t^{2}} y=0$. Let $p(t)=$ $-\frac{t+2}{t}=-1-\frac{2}{t}$. Now the Wronskian is $W(t)=c e^{-\int p(t) d t}=c e^{-\int\left(-1-\frac{2}{t}\right) d t}=$ $c e^{\int\left(1+\frac{2}{t}\right) d t}=c e^{t+2 \ln t}=c e^{t} e^{2 \ln t}=c e^{t} t^{2}$.
3. (Sec 3.2 Problem 16) Solution: Since $y(t)=\sin \left(t^{2}\right)$, we have $y(0)=$ $0, y^{\prime}(t)=2 t \cos \left(t^{2}\right)$ and $y^{\prime}(0)=0$, By the uniqueness of the solution of homogeneous equation, we must have $y(t)=0$. This means that $y(t)=\sin \left(t^{2}\right)$ can't be a solution of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$.
4. (Sec 3.2 Problem 25) Solution: Since $y_{1}(x)=x$ and $y_{2}(x)=x e^{x}$, we have $y_{1}^{\prime}(x)=1, y_{1}^{\prime \prime}(x)=0, y_{2}^{\prime}(x)=e^{x}+x e^{x}$ and $y_{2}^{\prime \prime}(x)=e^{x}+e^{x}+x e^{x}=$ $2 e^{x}+x e^{x}$. So $x^{2} y_{1}^{\prime \prime}-x(x+2) y_{1}^{\prime}+(x+2) y_{1}=0-x(x+2)+(x+2) x=0$ and $x^{2} y_{2}^{\prime \prime}-x(x+2) y_{2}^{\prime}+(x+2) y_{2}=x^{2}\left(2 e^{x}+x e^{x}\right)-x(x+2)\left(e^{x}+x e^{x}\right)+(x+2) x e^{x}=$ $2 x^{2} e^{x}+x^{3} e^{x}-x^{2} e^{x}-x^{3} e^{x}-2 x e^{x}-2 x^{2} e^{x}+x^{2} e^{x}+2 x e^{x}=0$.

So y_{1} and y_{2} are solutions. The Wronskain $W(x)=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=$ $x \cdot\left(e^{x}+x e^{x}\right)-x e^{x} \cdot 1=x^{2} e^{x} \neq 0$ if $x>0$. Therefore y_{1} and y_{2} forms a fundamental set of solutions.
5. (Sec 3.3 Problem 18)

Solution: Rewrite the equation as $y^{\prime \prime}-\frac{2 x}{1-x^{2}} y^{\prime}+\frac{\alpha(\alpha+1)}{1-x^{2}} y=0$. Let $p(x)=$ $-\frac{2 x}{1-x^{2}}$. Now the Wronskian is $W(x)=c e^{-\int p(x) d x}=c e^{-\int\left(-\frac{2 x}{1-x^{2}}\right) d x}=$ $c e^{\int\left(\frac{2 x}{1-x^{2}}\right) d x}=c e^{-\ln \left(1-x^{2}\right)}=\frac{c}{1-x^{2}}$. We have used the substitution $u=1-x^{2}$ and $d u=-2 x d x$ to get $\int\left(\frac{2 x}{1-x^{2}}\right) d x=-\int \frac{d u}{u}=-\ln (u)+c=-\ln \left(1-x^{2}\right)+c$.
6. (Sec 3.3 Problem 24)

Solution: Suppose y_{1} and y_{2} have zero at $t=t_{0}$, then the Wronskian $W\left(t_{0}\right)=y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{2}\left(t_{0}\right) y_{1}^{\prime}\left(t_{0}\right)=0$. By Abel Theorem, we know that $W(t)=0$ Thus y_{1} and y_{2} can't be a set of fundamental solutions.
7. (Sec 3.4 Problem 11)

Solution:Solving $r^{2}+6 r+13=0$, we have $r=-3 \pm 2$. Thus $y(t)=$ $c_{1} e^{-3 t} \cos (2 t)+c_{2} e^{-3 t} \sin (2 t)$.

