Solution to Quiz \#6 and HW 7

1. (quiz problem, (Sec 3.4 Problem 41))

Solution:uppose $y(t)=t^{r}$, we have $y^{\prime}(t)=r t^{r-1}$ and $y^{\prime \prime}(t)=r(r-1) t^{r-2}$. Thus $t^{2} y^{\prime \prime}(t)+3 t y^{\prime}(t)+1.25 y(t)=(r(r-1)+3 r+1.25) t^{r}=\left(r^{2}+2 r+1.25\right) t^{r}$. So $y=t^{r}$ is a solution of $t^{2} y^{\prime \prime}(t)+3 t y^{\prime}(t)+1.25 y(t)=0$ if $r^{2}+2 r+1.25=0$ and $r=\frac{-2 \pm \sqrt{4-5}}{2}=-1 \pm \frac{i}{2}$. Now $t^{\left(-1 \pm \frac{i}{2}\right) t}=t^{-1} e^{\left(\frac{i}{2} \ln t\right)}=t^{-1} \cos \left(\frac{\ln t}{2}\right)+i t^{-1} \sin \left(\frac{\ln t}{2}\right)$. So $y(t)=c_{1} t^{-1} \cos \left(\frac{\ln t}{2}\right)+c_{2} t^{-1} \sin \left(\frac{\ln t}{2}\right)$ is the general solution of $t^{2} y^{\prime \prime}(t)+$ $3 t y^{\prime}(t)+1.25 y(t)=0$

2. ((Sec 3.4 Problem 42))

Solution:uppose $y(t)=t^{r}$, we have $y^{\prime}(t)=r t^{r-1}$ and $y^{\prime \prime}(t)=r(r-1) t^{r-2}$. Thus $t^{2} y^{\prime \prime}(t)-4 t y^{\prime}(t)-6 y(t)=(r(r-1)-4 r-6) t^{r}=\left(r^{2}-5 r-6\right) t^{r}$. So $y=t^{r}$ is a solution of $t^{2} y^{\prime \prime}(t)-4 t y^{\prime}(t)-6 y(t)=0$ if $r^{2}-5 r-6=(r-6)(r+1)=0$, $r=6$ and $r=-1$. So $y(t)=c_{1} t^{6}+c_{2} t^{-1}$ is the general solution of $t^{2} y^{\prime \prime}(t)-4 t y^{\prime}(t)-6 y(t)=0$
3. ((Sec 3.5 Problem 12))

The characteristic equation is $r^{2}-6 r+9=0$. Note that $r^{2}-6 r+$ $9=(r-3)^{2}$. It has repeated roots $r=3$. The general solution of $\frac{d^{2} y}{d t^{2}}-6 \frac{d y}{d t}+9 y=0$ is $y(t)=c_{1} e^{3 t}+c_{2} t e^{3 t}$. Thus $y^{\prime}(t)=3 c_{1} e^{3 t}+c_{2} e^{3 t}+3 c_{2} t e^{3 t}=$ $\left(3 c_{1}+c_{2}\right) e^{3 t}+3 c_{2} t e^{3 t}$. Using $y(0)=0$ and $y^{\prime}(0)=2$, we have $c_{1}=0$ and $3 c_{1}+4 c_{2}=2$. Solving $c_{1}=0$ and $3 c_{1}+4 c_{2}=2$, we get $c_{1}=0$ and $c_{2}=2$. Hence $y(t)=2 t e^{3 t}$. We also have $\lim _{t \rightarrow \infty} 2 t e^{3 t}=\infty$.
4. ((Sec 3.5 Problem 28))

Solution: Rewrite the equation $(x-1) y^{\prime \prime}-x y^{\prime}+y=0$ as $y^{\prime \prime}-\frac{x}{x-1} y^{\prime}+$ $\frac{1}{x-1} y=0$ Let y_{2} be another solution of $(x-1) y^{\prime \prime}-x y^{\prime}+y=0$. We have $\left(\frac{y_{2}}{y_{1}}\right)^{\prime}=\frac{y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}}{y_{1}^{2}}=\frac{W(x)}{y_{1}^{2}}=\frac{C e^{\int \frac{x}{x-1} d x}}{\left(e^{x}\right)^{2}}=\frac{C e^{\int\left(1+\frac{1}{x-1}\right) d x}}{e^{2 x}}=\frac{C e^{(x+\ln (x-1))}}{e^{2 x}}=\frac{C e^{x}(x-1)}{e^{2 x}}=$ $C(x-1) e^{-x}$. So $\frac{y_{2}}{y_{1}}=\int C(x-1) e^{-x}=-C x e^{-x}+D$ and $y_{2}=y_{1}\left(-C x e^{-x}+D\right)=$ $e^{x}\left(-C x e^{-x}+D\right)=-C x+D e^{x}$. So the second solution is x.
5. (Sec 3.6 Problem 1)

Solution: Solving $r^{2}-2 r-3=(r-3)(r+1)=0$ The solution of $y^{\prime \prime}(t)-$ $2 y^{\prime}(t)-3 y(t)=0$ is $y(t)=c_{1} e^{3 t}+c_{2} e^{-t}$. We try $y_{p}=c e^{2 t}$ to be a particular solution of $y^{\prime \prime}(t)-2 y^{\prime}(t)-3 y(t)=3 e^{2 t}$. We have $y_{p}^{\prime}=2 c e^{2 t}, y_{p}^{\prime \prime}=4 c e^{2 t}$ and $y_{p}^{\prime \prime}(t)-2 y_{p}^{\prime}(t)-3 y_{p}(t)=4 c e^{2 t}-4 c e^{2 t}-3 c e^{2 t}=-3 c e^{2 t}$. So $y_{p}^{\prime \prime}(t)-$ $2 y_{p}^{\prime}(t)-3 y_{p}(t)=3 e^{2 t}$ if $-3 c=3$ and $c=-1$. Thus the general solution of $y^{\prime \prime}(t)-2 y^{\prime}(t)-3 y(t)=3 e^{2 t}$ is $y(t)=-e^{2 t}+c_{1} e^{3 t}+c_{2} e^{-t}$.
6. (Sec 3.6 Problem 12)

Solution: Solving $r^{2}-r-2=(r-2)(r+1)=0$, we know that the solution of $y^{\prime \prime}(t)-y^{\prime}(t)-2 y(t)=0$ is $y(t)=c_{1} e^{2 t}+c_{2} e^{-t}$. We try $y_{p}=c t e^{2 t}+d e^{-2 t}$ to
be a particular solution of $y^{\prime \prime}(t)-y^{\prime}(t)-2 y(t)=\cosh (2 t)=\frac{e^{2 t}+e^{-2 t}}{2}$. We have $y_{p}=c t e^{2 t}+d e^{-2 t}, y_{p}^{\prime}=c e^{2 t}+2 c t e^{2 t}-2 d e^{-2 t}, y_{p}^{\prime \prime}=2 c e^{2 t}+2 c e^{2 t}+4 c t e^{2 t}+$ $4 d e^{-2 t}=4 c e^{2 t}+4 c t e^{2 t}+4 d e^{-2 t}$ and $y_{p}^{\prime \prime}(t)-y_{p}^{\prime}(t)-2 y_{p}(t)=\left(4 c e^{2 t}+4 c t e^{2 t}+\right.$ $\left.4 d e^{-2 t}\right)-\left(c e^{2 t}+2 c t e^{2 t}-2 d e^{-2 t}\right)-2\left(c t e^{2 t}+d e^{-2 t}\right)=(4 c-c) e^{2 t}+(4 c-2 c-$ $2 c) t e^{2 t}+(4 d+2 d-2 d) e^{-2 t}=3 c e^{2 t}+4 d e^{-2 t}$. So $y_{p}^{\prime \prime}(t)-y_{p}^{\prime}(t)-2 y_{p}(t)=\frac{e^{2 t}+e^{-2 t}}{2}$ if $3 c=\frac{1}{2}, 4 d=\frac{1}{2}, c=\frac{1}{6}$ and $d=\frac{1}{8}$. Thus the general solution of $y^{\prime \prime}(t)-y^{\prime}(t)-2 y(t)=\cosh (2 t)$ is $y(t)=\frac{1}{6} t e^{2 t}+\frac{1}{8} e^{-2 t}+c_{1} e^{2 t}+c_{2} e^{-t}$.

