Solution to Quiz \#7 and HW 9

1. Guiz problem (Sec 4.3 Problem 18)

The given equation can be rewritten as

$$
\left(D^{4}+2 D^{3}+2 D^{2}\right) y=3 e^{t}+2 t e^{-t}+e^{-t} \sin (t) .
$$

First we solve $\left(D^{4}+2 D^{3}+2 D^{2}\right) y=0$. Solving the characteristic equation $r^{4}+2 r^{3}+2 r^{2}=r^{2}\left(r^{2}+2 r+2\right)=r^{2}\left((r+1)^{2}+1\right)=0$, we have $r=0,0,-1 \pm i$. The solutions of $\left(D^{4}+2 D^{3}+2 D^{2}\right) y=0$ are spanned by $1, t, e^{-t} \cos (t)$ and $e^{-t} \sin (t)$.
Now we should find the annihilator of $3 e^{t}+2 t e^{-t}+e^{-t} \sin (t)$. We have $(D-1)\left(e^{t}\right)=0,(D+1)^{2}\left(t e^{-t}\right)=0$ and $\left((D+1)^{2}+1\right)\left(e^{-t} \sin (t)\right)=0$. So $(D-1)(D+1)^{2}\left((D+1)^{2}+1\right)\left(3 e^{t}+2 t e^{-t}+e^{-t} \sin (t)\right)=0$.
The given equation is $\left(D^{4}+2 D^{3}+2 D^{2}\right) y=3 e^{t}+2 t e^{-t}+e^{-t} \sin (t)$. Applying the annihilator $(D-1)(D+1)^{2}\left((D+1)^{2}+1\right)$ to the equation above, we have

$$
\begin{gathered}
\quad(D-1)(D+1)^{2}\left((D+1)^{2}+1\right)\left(D^{4}+2 D^{3}+2 D^{2}\right) y \\
=(D-1)(D+1)^{2}\left((D+1)^{2}+1\right)\left(3 e^{t}+2 t e^{-t}+e^{-t} \sin (t)\right)=0 .
\end{gathered}
$$

Solving the characteristic equation
$(r-1)(r+1)^{2}\left(\left((r+1)^{2}+1\right)\left(r^{4}+2 r^{3}+2 r^{2}\right)\right.$
$=(r-1)(r+1)^{2}\left(\left((r+1)^{2}+1\right) r^{2}\left((r+1)^{2}+1\right)=(r-1)(r+1)^{2}\left(\left((r+1)^{2}+1\right)^{2} r^{2}=0\right.\right.$,
we have $r=1,-1,-1,-1 \pm i,-1 \pm i, 0$ and 0 . The solution of $\left(D^{4}+2 D^{3}+2 D^{2}\right) y=3 e^{t}+2 t e^{-t}+e^{-t} \sin (t)$ is spanned by e^{t}, $e^{-t}, t e^{-t}$, $e^{-t} \cos (t), e^{-t} \sin (t), t e^{-t} \cos (t), t e^{-t} \sin (t), 1$ and t. Excluding those functions appeared as the solution of $\left(D^{4}+2 D^{3}+2 D^{2}\right) y=0$, we know that the particular solution is of the form $y_{p}(t)=c_{1} e^{t}+c_{2} e^{-t}+c_{3} t e^{-t}+$ $c_{4} t e^{-t} \cos (t)+c_{5} t e^{-t} \sin (t)$.
2. (Sec 4.1 Problem 6) We rewrite the equation $\left(x^{2}-4\right) y^{6}(t)+x^{2} y^{\prime \prime \prime}+9 y=$ 0 as $y^{6}(t)+\frac{x^{2}}{x^{2}-4} y^{\prime \prime \prime}+\frac{9}{x^{2}-4} y=0$. Now the function $\frac{x^{2}}{x^{2}-4}$ and $\frac{9}{x^{2}-4}$ are continuous on $(-\infty,-2) \cup(-2,2) \cup(2, \infty)$. So the solution exists on $(-\infty,-2) \cup(-2,2) \cup(2, \infty)$.
3. (Sec 4.2 Problem 15) The characteristic equation of $y^{(6)}(t)+y=0$ is $r^{6}+1=0$. So $r^{6}=-1=e^{i(\pi+2 k \pi)}$ where k is an integer. Now $r=e^{\frac{i(\pi+2 k \pi)}{6}}$ for $k=0,1,2,3,4$ and 5. So $r=e^{i\left(\frac{\pi}{6}\right)}=\cos \left(\frac{\pi}{6}\right)+i \sin \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}+i \frac{1}{2}$, $r=e^{i\left(\frac{3 \pi}{6}\right)}=e^{i\left(\frac{\pi}{2}\right)}=\cos \left(\frac{\pi}{2}\right)+i \sin \left(\frac{\pi}{2}\right)=i, r=e^{i\left(\frac{5 \pi}{6}\right)}==\cos \left(\frac{5 \pi}{6}\right)+i \sin \left(\frac{5 \pi}{6}\right)=$ $-\frac{\sqrt{3}}{2}+i \frac{1}{2}, r=e^{i\left(\frac{7 \pi}{6}\right)}==\cos \left(\frac{7 \pi}{6}\right)+i \sin \left(\frac{7 \pi}{6}\right)=-\frac{\sqrt{3}}{2}-i \frac{1}{2}, r=e^{i\left(\frac{9 \pi}{6}\right)}==$ $\cos \left(\frac{3 \pi}{2}\right)+i \sin \left(\frac{3 \pi}{2}\right)=-i, r=e^{i\left(\frac{11 \pi}{6}\right)}==\cos \left(\frac{11 \pi}{6}\right)+i \sin \left(\frac{11 \pi}{6}\right)=\frac{\sqrt{3}}{2}-i \frac{1}{2}$. So $r=\frac{\sqrt{3}}{2} \pm i \frac{1}{2}, \pm i$ and $r=-\frac{\sqrt{3}}{2} \pm i \frac{1}{2}$. Thus the general solution is $y(t)=$ $c_{1} e^{\frac{\sqrt{3} t}{2}} \cos \left(\frac{t}{2}\right)+c_{2} e^{\frac{\sqrt{3} t}{2}} \sin \left(\frac{t}{2}\right)+c_{3} \cos (t)+c_{4} \sin (t)+c_{5} e^{\frac{-\sqrt{3} t}{2}} \cos \left(\frac{t}{2}\right)+c_{6} e^{\frac{-\sqrt{3} t}{2}} \sin \left(\frac{t}{2}\right)$.
4. (Sec 4.3 Problem 1) The given equation can be rewritten as
$\left(D^{3}-D^{2}-D+1\right) y=2 e^{-t}+3$. First we solve $\left(D^{3}-D^{2}-D+1\right) y=0$. Solving the characteristic equation
$r^{3}-r^{2}-r+1=r^{2}(r-1)-(r-1)=\left(r^{2}-1\right)(r-1)=(r-1)^{2}(r+1)=0$, we have $r=1,1$ and -1 . The solutions of $\left(D^{3}-D^{2}-D+1\right) y=0$ are spanned by e^{t}, $t e^{t}$ and e^{-t}.

Now we should find the annihilator of $2 e^{-t}+3$. We have $(D+1)\left(e^{-t}\right)=$ $0, D(3)=0$. So $(D+1) D\left(2 e^{-t}+3\right)=0$.

The given equation is $\left(D^{3}-D^{2}-D+1\right) y=2 e^{-t}+3$. Applying the annihilator $(D+1) D$ to the equation above, we have
$(D+1) D\left(D^{3}-D^{2}-D+1\right) y=(D+1) D\left(2 e^{-t}+3\right)=0$. Solving the characteristic equation
$(r-1) r\left(r^{3}-r^{2}-r+1\right)=(r-1) r(r-1)^{2}(r+1)=r(r-1)^{3}(r+1)=0$, we have $r=$ $0,1,1,1$ and -1 . The solution of $\left.D^{3}-D^{2}-D+1\right) y=2 e^{-t}+3$ is spanned by $1, e^{t}, t e^{t}, t^{2} e^{t}$ and e^{-t}. Excluding those functions appeared as the solution of $\left(D^{3}-D^{2}-D+1\right) y=0$, we know that the particular solution is of the form $y_{p}(t)=c_{1}+c_{2} t^{2} e^{t}$. With $y_{p}(t)=c_{1}+c_{2} t^{2} e^{t}$, we have $y_{p}^{\prime}(t)=$ $2 c_{2} t e^{t}+c_{2} t^{2} e^{t}, y_{p}^{\prime \prime}(t)=2 c_{2} e^{t}+2 c_{2} t e^{t}+2 c_{2} t e^{t}+c_{2} t^{2} e^{t}=2 c_{2} e^{t}+4 c_{2} t e^{t}+c_{2} t^{2} e^{t}$ and $y_{p}^{\prime \prime \prime}(t)=2 c_{2} e^{t}+4 c_{2} e^{t}+4 c_{2} t e^{t}+2 c_{2} t e^{t}+c_{2} t^{2} e^{t}=6 c_{2} e^{t}+6 c_{2} t e^{t}+c_{2} t^{2} e^{t}$. So $y_{p}^{\prime \prime \prime}-y_{p}^{\prime \prime}-y_{p}^{\prime}+y=6 c_{2} e^{t}+6 c_{2} t e^{t}+c_{2} t^{2} e^{t}-\left(2 c_{2} e^{t}+4 c_{2} t e^{t}+c_{2} t^{2} e^{t}\right)-\left(2 c_{2} t e^{t}+c_{2} t^{2} e^{t}\right)+$ $c_{1}+c_{2} t^{2} e^{t}=2 c_{2} e^{t}+c_{1}=2 e^{-t}+3$ if $c_{1}=3$ and $c_{2}=1$. Thus the general solution of $\left(D^{3}-D^{2}-D+1\right) y=2 e^{-t}+3$ is $y(t)=3+t^{2} e^{-t}+c_{1} e^{t}+c_{2} t e^{t}+c_{3} e^{-t}$.
5. (Sec 4.3 Problem 13)

The given equation can be rewritten as $\left(D^{3}-2 D^{2}+D\right) y=t^{3}+2 e^{t}$. First we solve $\left(D^{3}-2 D^{2}+D\right) y=0$. Solving the characteristic equation $r^{3}-2 r^{2}+r=r\left(r^{2}-2 r+1\right)=r(r-1)^{2}=0$, we have $r=0,1$ and 1 . The solutions of $\left(D^{3}-2 D^{2}+D\right) y=0$ are spanned by $1, e^{t}$ and $t e^{t}$.

Now we should find the annihilator of $t^{3}+2 e^{t}$.
We have $D^{4}\left(t^{3}\right)=0,(D-1)\left(e^{t}\right)=0$. So $D^{4}(D-1)\left(t^{3}+2 e^{t}\right)=0$.
The given equation is $\left(D^{3}-2 D^{2}+D\right) y=t^{3}+2 e^{t}$. Applying the annihilator $D^{4}(D-1)$ to the equation above, we have $D^{4}(D-1)\left(D^{3}-\right.$ $\left.2 D^{2}+D\right) y=D^{4}(D-1)\left(t^{3}+2 e^{t}\right)=0$. Solving the characteristic equation $r^{4}(r-1)\left(r^{3}-2 r^{2}+r\right)=r^{4}(r-1) r(r-1)^{2}=r^{5}(r-1)^{3}=0$, we have $r=0$ with multiplicities 5 and $r=1$ with multiplicities 3. The solution of $\left(D^{3}-2 D^{2}+D\right) y=t^{3}+2 e^{t}$ is spanned by $1, t, t^{2}, t^{3}, t^{4}, e^{t}$, $t e^{t}$ and $t^{2} e^{t}$. Excluding those functions appeared as the solution of $\left(D^{3}-2 D^{2}+D\right) y=0$, we know that the particular solution is of the form $y_{p}(t)=c_{1} t+c_{2} t^{2}+c_{3} t^{3}+c_{4} t^{4}+c_{5} t^{2} e^{t}$.
6. (Sec 4.3 Problem 17)

The given equation can be rewritten as $\left(D^{4}-D^{3}-D^{2}+D\right) y=t^{2}+4+$ $t \sin (t)$. First we solve $\left(\left(D^{4}-D^{3}-D^{2}+D\right) y=0\right.$. Solving the characteristic equation $r^{4}-r^{3}-r^{2}+r=r^{3}(r-1)-r(r-1)=\left(r^{3}-r\right)(r-1)$ $=r(r-1)(r+1)(r-1)=r(r-1)^{2}(r+1)=0$, we have $r=0,1,1$ and -1 . The solutions of $\left(D^{4}-D^{3}-D^{2}+D\right) y=0$ are spanned by $1, e^{t}$, $t e^{t}$ and e^{-t}.

Now we should find the annihilator of $t^{2}+4+t \sin (t)$.
We have $D^{3}\left(t^{2}+4\right)=0,\left(D^{2}+1\right)^{2}(t \sin (t))=0$. So $D^{3}\left(D^{2}+1\right)^{2}\left(t^{2}+4+t \sin (t)\right)=0$.

The given equation is $\left(D^{4}-D^{3}-D^{2}+D\right) y=t^{2}+4+t \sin (t)$. Applying the annihilator $D^{3}\left(D^{2}+1\right)^{2}$ to the equation above, we have
$D^{3}\left(D^{2}+1\right)^{2}\left(D^{4}-D^{3}-D^{2}+D\right) y=D^{3}\left(D^{2}+1\right)^{2}\left(t^{2}+4+t \sin (t)\right)=0$. Solving the characteristic equation $r^{4}\left(r^{2}+1\right)^{2}\left(r^{4}-r^{3}-r^{2}+r\right)=r^{4}\left(r^{2}+1\right)^{2} r(r-$ $1)^{2}(r+1)=r^{5}\left(r^{2}+1\right)^{2}(r-1)^{2}(r+1)=0$, we have $r=0$ with multiplicities 5 and $r=1$ with multiplicities $2, \mathrm{r}=-1$ and $r=-i$ with multiplicities 2. The solution of $\left(D^{4}-D^{3}-D^{2}+D\right) y=t^{2}+4+t \sin (t)$ is spanned by $1, t, t^{2}, t^{3}, \cos (t), \sin (t), t \cos (t), t \sin (t), e^{t}, t e^{t}$ and e^{-t}. Excluding those functions appeared as the solution of $\left(D^{4}-D^{3}-D^{2}+D\right) y=0$, we know that the particular solution is of the form $y_{p}(t)=c_{1} t+c_{2} t^{2}+$ $c_{3} t^{3}+c_{4} \cos (t)+c_{5} \sin (t)+c_{6} t \cos (t)+c_{7} t \sin (t)$.

