Solution to Quiz \#8 and HW 10

1. Quiz problem (Sec 6.2 Problem 18) Taking the Laplace's transform of the differential equation $y^{(4)}-y=0$, we have $L\left(y^{(4)}-y\right)=0$.
Using $L\left(y^{(4)}\right)=s^{4} L(y)-s^{3} y(0)-s^{2} y^{\prime}(0)-s y^{\prime \prime}(0)-y^{\prime \prime \prime}(0)$, we have
$s^{4} L(y)-s^{3} y(0)-s^{2} y^{\prime}(0)-s y^{\prime \prime}(0)-y^{\prime \prime \prime}(0)-L(y)=0$ and
$\left(s^{4}-1\right) L(y)-s^{3} y(0)-s^{2} y^{\prime}(0)-s y^{\prime \prime}(0)-y^{\prime \prime \prime}(0)=0$. Substituting $y(0)=$ $1, y^{\prime}(0)=0, y^{\prime \prime}(0)=1, y^{\prime \prime \prime}(0)=0$, we have $\left(s^{4}-1\right) L(y)-s^{3}-s=0$, $\left(s^{4}-1\right) L(y)=s^{3}+s$. So we have $L(y)=\frac{s^{3}+s}{s^{4}-1}=\frac{s\left(s^{2}+1\right)}{\left(s^{2}-1\right)\left(s^{2}+1\right)}=\frac{s}{s^{2}-1}$ and $y(t)=L^{-1}\left(\frac{s}{s^{2}-1}\right)=\cosh (t)$.
2. (Sec 6.1 Problem a) Find the Laplace transform of $2 t^{2}+\sin (2 t)+e^{t} \cos (2 t)$. Recall that the $L\left(t^{2}\right)=\frac{2}{s^{3}}, L(\sin (2 t))=\frac{2}{s^{2}+2^{2}}=\frac{2}{s^{2}+4}$ and $L\left(e^{t} \cos (2 t)\right)=$ $\frac{s}{(s-1)^{2}+2^{2}}=\frac{s}{(s-1)^{2}+4}$. So $L\left(2 t^{2}+\sin (2 t)+e^{t} \cos (2 t)\right)=2 L\left(2 t^{2}\right)+L(\sin (2 t))+$ $L\left(e^{t} \cos (2 t)\right)=\frac{4}{s^{3}}+\frac{2}{s^{2}+4}+\frac{3 s}{(s-1)^{2}+4}$.
3. (Sec 6.1 Problem b) Find the Laplace transform of $t e^{2 t}-t e^{t} \sin (2 t)$.

Recall that the $L\left(e^{2 t}\right)=\frac{1}{s-2}$ and $L\left(e^{t} \sin (2 t)\right)=\frac{2}{(s-1)^{2}+2^{2}}=\frac{2}{(s-1)^{2}+4}$. We have
$L\left(-t e^{2 t}\right)=\left(\frac{1}{s-1}\right)^{\prime}=\left(\frac{-1}{(s-1)^{2}}\right)$ and $L\left(-t e^{t} \sin (2 t)\right)=\left(\frac{2}{(s-1)^{2}+4}\right)^{\prime}=\frac{-4(s-1)}{\left((s-1)^{2}+4\right)^{2}}$, i.e. $L\left(t e^{2 t}\right)=\left(\frac{1}{(s-1)^{2}}\right)$ and $L\left(t e^{t} \sin (2 t)\right)=\frac{4(s-1)}{\left((s-1)^{2}+4\right)^{2}}$. So $L\left(t e^{2 t}-t e^{t} \sin (2 t)\right)=$ $L\left(t e^{2 t}\right)-L\left(t e^{t} \sin (2 t)\right)=\frac{1}{(s-1)^{2}}-\frac{4(s-2)}{\left((s-1)^{2}+4\right)^{2}}$.
4. (Sec 6.2 Problem 12) Taking the Laplace's transform of the differential equation $y^{\prime \prime}+3 y^{\prime}+2 y=0$, we have $L\left(y^{\prime \prime}+3 y^{\prime}+2 y\right)=L(0)=0$. Using $L\left(y^{\prime \prime}\right)=s^{2} L(y)-s y(0)-y^{\prime}(0)$ and $L\left(y^{\prime}\right)=s L(y)-y(0)$, we have $s^{2} L(y)-$ $s y(0)-y^{\prime}(0)+3(s L(y)-y(0))+2 L(y)=0$ and
$\left(s^{2}+3 s+2\right) L(y)-s y(0)-y^{\prime}(0)-3 y(0)=0$. Applying the initial conditions, we have $\left(s^{2}+3 s+2\right) L(y)=s+3$, So we have $L(y(t))=\frac{s+3}{\left(s^{2}+3 s+2\right)}$. Using partial fractions, $\frac{s+3}{\left(s^{2}+3 s+2\right)}=\frac{2}{s+1}-\frac{1}{s+2} .\left(\frac{s+3}{\left(s^{2}+3 s+2\right)}=\frac{s+3}{(s+1)(s+2)}=\frac{a}{(s+1)}+\frac{b}{(s+2)}\right.$. Multiplying $(s+1)(s+2)$, we have $s+3=a(s+2)+b(s+1)=(a+b) s+2 a+b$. Comparing the coefficient, we have $a+b=1$ and $2 a+b=3$. This gives $a=2$ and $b=-1$.)

Hence $y(t)=L^{-1}\left(\frac{2}{s+1}-\frac{1}{s+2}\right)=2 e^{-t}-e^{-2 t}$.

5. (Sec 4.3 Problem 13)

Taking the Laplace's transform of the eq $y^{\prime \prime}-2 y^{\prime}+2 y=0$, we have $L\left(y^{\prime \prime}-2 y^{\prime}+2 y\right)=L(0)=0$. Using $L\left(y^{\prime \prime}\right)=s^{2} L(y)-s y(0)-y^{\prime}(0)$ and $L\left(y^{\prime}\right)=s L(y)-y(0)$, we have $s^{2} L(y)-s y(0)-y^{\prime}(0)-2(s L(y)-y(0))+2 L(y)=0$ and $\left(s^{2}-2 s+2\right) L(y)-s y(0)-y^{\prime}(0)+2 y(0)=0$.

Applying the initial conditions,, we have
$\left(s^{2}-2 s+2\right) L(y)=1$ and $\left(s^{2}+4 s+5\right) L(y)=2 s+3$. So we have $L(y)=\frac{1}{s^{2}-2 s+2}$. Note that $s^{2}-2 s+2=(s-1)^{2}+1$. $y(t)=L^{-1}\left(\frac{1}{s^{2}-2 s+2}\right)=L^{-1}\left(\frac{1}{s-1)^{2}+1}\right)=$ $e^{t} \sin (t)$.

