Solution to Quiz \#9 and HW 11

1. Quiz problem (Sec 7.5 Problem 1)

We have

$$
\begin{gathered}
\text { Let } \quad A=\left(\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right) \\
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
3-\lambda & -2 \\
2 & -2-\lambda
\end{array}\right)=(3-\lambda)(-2-\lambda)+4=\lambda^{2}-\lambda-2=(\lambda-2)(\lambda+1) .
\end{gathered}
$$

Hence the eigenvalues of A are $\lambda=2$ and $\lambda=-1$.
To find the eigenvector corresponding to $\lambda=2$, we must solve ($A-$ $\lambda I) v=0$. Substituting A and $\lambda=2$ gives

$$
\left(\begin{array}{ll}
1 & -2 \\
2 & -4
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} .
$$

This matrix equation is equivalent to equation $v_{1}-2 v_{2}=0$ and $2 v_{1}-$ $4 v_{2}=0$. From $v_{1}-2 v_{2}=0$, we have $v_{1}=2 v_{2}$ and

$$
v=\binom{v_{1}}{v_{2}}=\binom{2 v_{2}}{v_{2}}=v_{2}\binom{2}{1} .
$$

We may choose $v_{2}=1$ to get the eigenvector

$$
v=\binom{2}{1} \text { with eigenvalue } 2
$$

Now we want to find the eigenvector corresponding to $\lambda=-1$, we must solve $(A-\lambda I) v=0$. Substituting A and $\lambda=-1$ gives

$$
\left(\begin{array}{ll}
4 & -2 \\
2 & -1
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} .
$$

This matrix equation is equivalent to equation $4 v_{1}-2 v_{2}=0$ and $2 v_{1}-$ $v_{2}=0$. From $4 v_{1}-2 v_{2}=0$, we have $v_{2}=2 v_{1}$ and

$$
v=\binom{v_{1}}{v_{2}}=\binom{v_{1}}{2 v_{1}}=v_{1}\binom{1}{2} .
$$

We may choose $v_{1}=1$ to get the eigenvector

$$
v=\binom{1}{2} \text { with eigenvalue }-1
$$

Thus the general solution is

$$
x(t)=c_{1} e^{2 t}\binom{2}{1}+c_{2} e^{-t}\binom{1}{2}=\binom{2 c_{1} e^{2 t}+c_{2} c_{2} e^{-t}}{c_{1} e^{2 t}+2 c_{2} c_{2} e^{-t}} .
$$

2. (Sec6.6 Problem 7)
$L\left(\int_{0}^{t} \sin (t-\tau) \cos (\tau) d \tau\right)=L((g * h)(t))$ where $g(t)=\sin (t)$ and $h(t)=$ $\cos (t)$. So $L\left(_^{t} \sin (t-\tau) \cos (\tau) d \tau\right)=L(\sin (t)) L(\cos (t))=\frac{1}{s^{2}+1} \cdot \frac{s}{s^{2}+1}=\frac{s}{\left(s^{2}+1\right)^{2}}$.
3. (Sec6.6 Problem 14) $L\left(y^{\prime \prime}+2 y^{\prime}+2 y\right)=L(\sin (\alpha t))$
$\Rightarrow\left(s^{2}+2 s+2\right) L(y)=L(\sin (\alpha t))$ (Use $y(0)=y^{\prime}(0)=0$.)
$\Rightarrow L(y)=\frac{1}{s^{2}+2 s+2} L(\sin (\alpha t))$ (Use $y(0)=y^{\prime}(0)=0$.)
So $y(t)=L^{-1}\left(\frac{1}{s^{2}+2 s+2} L(\sin (\alpha t))\right)$. Let $f(t)=L^{-1}\left(\frac{1}{s^{2}+2 s+2}\right)=L^{-1}\left(\frac{1}{(s+1)^{2}+1}\right)=$ $e^{-t} \sin (t)$. and $g(t)=L^{-1}(L(\sin (\alpha t)))=\sin (\alpha t)$.
Then $y(t)=\int_{0}^{t} f(t-\tau) g(\tau) d \tau=\int_{0}^{t} e^{-(t-\tau)} \sin (t-\tau) \sin (\alpha \tau) d \tau$.
4. (Sec6.6 Problem 26) $L\left(\phi^{\prime}(t)+\int_{0}^{t}(t-\xi) \phi(\xi) d \xi\right)=L(t)$.
$\left.\Rightarrow L\left(\phi^{\prime}(t)\right)+L\left(\int_{0}^{t}(t-\xi) \phi(\xi) d \xi\right)\right)=\frac{1}{s^{2}}$
$\Rightarrow s L(\phi(t))+L(t) L(\phi(t))=\frac{1}{s^{2}}$
$\Rightarrow s L(\phi(t))+\frac{1}{s^{2}} L(\phi(t))=\frac{1}{s^{2}}$
$\Rightarrow\left(s+\frac{1}{s^{2}}\right) L(\phi(t))=\frac{1}{s^{2}}$
$\Rightarrow\left(\frac{s^{3}+1}{s^{2}}\right) L(\phi(t))=\frac{1}{s^{2}}$
$\Rightarrow L(\phi(t))=\frac{1}{\left(s^{3}+1\right)}$
$\Rightarrow \phi(t)=L^{-1}\left(\frac{1}{s^{3}+1}\right)$
Note that $s^{3}+1=(s+1)\left(s^{2}-s+1\right)$ and $s^{2}-s+1=(s-(1 / 2))^{2}+(3 / 4)$.
So $\frac{1}{s^{3}+1}=\frac{a}{s+1}+\frac{b(s-(1 / 2))+c}{s^{2}-s+1}$ and
$1=a\left(s^{2}-s+1\right)+(b(s-(1 / 2))+c)(s+1)$
$=a s^{2}-a s+a+b s^{2}-(1 / 2) b s+c s+b s-(1 / 2) b+c$
$=(a+b) s^{2}+(-a+(1 / 2) b+c) s+(a-(1 / 2) b+c)$.
Comparing the coefficient, we get $a+b=0,-a+(1 / 2) b+c=0$ and $a-(1 / 2) b+c=1$. Adding $-a+(1 / 2) b+c=0$ and $a-(1 / 2) b+c=1$, we get $2 c=1$ and $c=(1 / 2)$. From $a+b=0$, we have $a=-b$. From $a=-b$ and $-a+(1 / 2) b+c=0$, we have $(3 / 2) b+(1 / 2)=0$ and $b=-1 / 3$. Using $a=-b$, we get $a=1 / 3$. So $\frac{1}{s^{3}+1}=1 / 3 \frac{1}{s+1}-(1 / 3) \frac{(s-(1 / 2))}{s^{2}-s+1}+(1 / 2) \frac{1}{s^{2}-s+1}$. Now $L^{-1}\left(\frac{(s-(1 / 2))}{s^{2}-s+1}\right)=L^{-1}\left(\frac{(s-(1 / 2))}{s-(1 / 2))^{2}+\left(\sqrt{3} / 22^{2}\right.}\right)=e^{t / 2} \cos (\sqrt{3} t / 2)$ and $L^{-1}\left(\frac{1}{s^{2}-s+1}\right)=$ $L^{-1}\left(\frac{1}{s-(1 / 2))^{2}+(\sqrt{3} / 2)^{2}}\right)=\frac{2}{\sqrt{3}} e^{t / 2} \sin (\sqrt{3} t / 2)$.

Hence $y(t)=L^{-1}\left((1 / 3) \frac{1}{s+1}-(1 / 3) \frac{(s-(1 / 2))}{s^{2}-s+1}+(1 / 2) \frac{1}{s^{2}-s+1}\right)$
$=(1 / 3) e^{-t}-(1 / 3) e^{t / 2} \cos (\sqrt{3} t / 2)+\frac{1}{\sqrt{3}} e^{t / 2} \sin (\sqrt{3} t / 2)$.
5. (Sec 7.5 Problem 5)

We have

$$
\text { Let } \quad A=\left(\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right) \text {. }
$$

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
-2-\lambda & 1 \\
1 & -2-\lambda
\end{array}\right)=(-2-\lambda)^{2}-1=\lambda^{2}+4 \lambda+3=(\lambda+3)(\lambda+1) .
$$

Hence the eigenvalues of A are $\lambda=-3$ and $\lambda=-1$.
To find the eigenvector corresponding to $\lambda=-3$, we must solve $(A-\lambda I) v=0$. Substituting A and $\lambda=-3$ gives

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} .
$$

This matrix equation is equivalent to equation $v_{1}+v_{2}=0$ and $v_{1}+v_{2}=0$. From $v_{1}+v_{2}=0$, we have $v_{1}=-v_{2}$ and

$$
v=\binom{v_{1}}{v_{2}}=\binom{-v_{2}}{v_{2}}=v_{2}\binom{-1}{1} .
$$

We may choose $v_{2}=1$ to get the eigenvector

$$
v=\binom{-1}{1} \text { with eigenvalue }-3
$$

Now we want to find the eigenvector corresponding to $\lambda=-1$, we must solve $(A-\lambda I) v=0$. Substituting A and $\lambda=-1$ gives

$$
\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} .
$$

This matrix equation is equivalent to equation $-v_{1}+v_{2}=0$ and $v_{1}-v_{2}=$ 0 . From $v_{1}-v_{2}=0$, we have $v_{2}=v_{1}$ and

$$
v=\binom{v_{1}}{v_{2}}=\binom{v_{1}}{v_{1}}=v_{1}\binom{1}{1} .
$$

We may choose $v_{1}=1$ to get the eigenvector

$$
v=\binom{1}{1} \text { with eigenvalue } 2
$$

Thus the general solution is

$$
x(t)=c_{1} e^{-3 t}\binom{-1}{1}+c_{2} e^{-t}\binom{1}{1}=\binom{-c_{1} e^{-3 t}+c_{2} c_{2} e^{-t}}{c_{1} e^{-3 t}+c_{2} c_{2} e^{-t}} .
$$

6. (Sec 7.5 Problem 6)

We have

$$
\text { Let } \quad A=\left(\begin{array}{ll}
5 / 4 & 3 / 4 \\
3 / 4 & 5 / 4
\end{array}\right) \text {. }
$$

$\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}5 / 4-\lambda & 3 / 4 \\ 3 / 4 & 5 / 4-\lambda\end{array}\right)=(5 / 4-\lambda)^{2}-(9 / 16)=\lambda^{2}-(5 / 2) \lambda+1=(\lambda-(1 / 2))(\lambda-2)$.
Hence the eigenvalues of A are $\lambda=1 / 2$ and $\lambda=2$.
To find the eigenvector corresponding to $\lambda=1 / 2$, we must solve $(A-\lambda I) v=0$. Substituting A and $\lambda=1 / 2$ gives

$$
\left(\begin{array}{ll}
3 / 4 & 3 / 4 \\
3 / 4 & 3 / 4
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} .
$$

This matrix equation is equivalent to equation $(3 / 4) v_{1}+(3 / 4) v_{2}=0$ and $(3 / 4) v_{1}+(3 / 4) v_{2}=0$. From $(3 / 4) v_{1}+(3 / 4) v_{2}=0$, we have $v_{1}=-v_{2}$ and

$$
v=\binom{v_{1}}{v_{2}}=\binom{-v_{2}}{v_{2}}=v_{2}\binom{-1}{1} .
$$

We may choose $v_{2}=1$ to get the eigenvector

$$
v=\binom{-1}{1} \text { with eigenvalue } \quad(1 / 2)
$$

Now we want to find the eigenvector corresponding to $\lambda=2$, we must solve $(A-\lambda I) v=0$. Substituting A and $\lambda=2$ gives

$$
\left(\begin{array}{cc}
-3 / 4 & 3 / 4 \\
3 / 4 & -3 / 4
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} .
$$

This matrix equation is equivalent to equation $-(3 / 4) v_{1}+(3 / 4) v_{2}=0$ and $(3 / 4) v_{1}-(3 / 4) v_{2}=0$. From $(3 / 4) v_{1}-(3 / 4) v_{2}=0$, we have $v_{2}=v_{1}$ and

$$
v=\binom{v_{1}}{v_{2}}=\binom{v_{1}}{v_{1}}=v_{1}\binom{1}{1} .
$$

We may choose $v_{1}=2$ to get the eigenvector

$$
v=\binom{1}{1} \text { with eigenvalue } 2
$$

Thus the general solution is

$$
x(t)=c_{1} e^{(1 / 2) t}\binom{-1}{1}+c_{2} e^{2 t}\binom{1}{1}=\binom{-c_{1} e^{(1 / 2) t}+c_{2} c_{2} e^{2 t}}{c_{1} e^{(1 / 2) t}+c_{2} c_{2} e^{2 t}}
$$

