The step function $u_{c}(t)$ is defined by

$$
u_{c}(t)=\left\{\begin{array}{l}
0, \quad 0 \leq t<c \\
1, c \leq t
\end{array}\right.
$$

The function $u_{a, b}(t)$ is defined by

$$
u_{a, b}(t)=\left\{\begin{array}{l}
0, \quad 0 \leq t<a \\
1, a \leq t<b \\
0, b \leq t
\end{array}\right.
$$

We have $u_{a, b}(t)=u_{a}(t)-u_{b}(t)$.
A function of the form

$$
f(t)=\left\{\begin{array}{l}
p(t), \quad 0 \leq t<a \\
q(t), \quad a<t
\end{array}\right.
$$

can be expressed as the sum of step functions by noting that

$$
\begin{gathered}
f(t)=\left\{\begin{array}{l}
p(t), \quad 0 \leq t<a, \\
q(t), \\
a \leq t,
\end{array}\right. \\
=\left\{\begin{array}{l}
p(t), 0 \leq t<a, \\
0, a \leq t,
\end{array}+\left\{\begin{array}{l}
0,0 \leq t<a, \\
q(t), a \leq t,
\end{array}\right.\right. \\
=p(t) \cdot\left\{\begin{array}{l}
1,0 \leq t<a, \\
0, a \leq t,
\end{array}+q(t) \cdot \begin{cases}0, & 0 \leq t<a, \\
1, a \leq t,\end{cases} \right. \\
=p(t)\left(u_{0}(t)-u_{a}(t)\right)+q(t) u_{a}(t) \\
=p(t) u_{0}(t)+(-p(t)+q(t)) u_{a}(t) .
\end{gathered}
$$

A function of the form

$$
f(t)=\left\{\begin{array}{l}
p(t), \quad 0 \leq t<a \\
q(t), a \leq t<b \\
r(t), b \leq t
\end{array}\right.
$$

can be expressed as the sum of step function by noting that

$$
\begin{gathered}
f(t)=\left\{\begin{array}{l}
p(t), 0 \leq t<a, \\
q(t), a \leq t<b, \\
r(t), b \leq t .
\end{array}\right. \\
=\left\{\begin{array}{l}
p(t), \quad 0 \leq t<a, \\
0, a \leq t<b, \\
0, b \leq t .
\end{array}+\left\{\begin{array}{l}
0,0 \leq t<a, \\
q(t), a \leq t<b, \\
0, b \leq t .
\end{array} \quad+\left\{\begin{array}{l}
0,0 \leq t<a, \\
0, a \leq t<b, \\
r(t), b \leq t .
\end{array}\right.\right.\right. \\
=p(t) \cdot\left\{\begin{array}{l}
1,0 \leq t<a, \\
0, a \leq t<b, \\
0, b \leq t .
\end{array}+q(t) \cdot\left\{\begin{array}{l}
0,0 \leq t<a, \\
1, a \leq t<b, \\
0, b \leq t .
\end{array}+r(t) \cdot\left\{\begin{array}{l}
0,0 \leq t<a, \\
0, a \leq t<b, \\
1, b \leq t .
\end{array}\right.\right.\right. \\
=p(t)\left(u_{0}(t)-u_{a}(t)\right)+q(t)\left(u_{a}(t)-u_{b}(t)\right)+r(t) u_{b} \\
=p(t) u_{0}(t)+(-p(t)+q(t)) u_{a}(t)+(-q(t)+r(t)) u_{b}(t) .
\end{gathered}
$$

