
Solution to Review Problems for Midterm I
MATH 3860 – 002

Disclaimer: My solution is only correct up to a constant.

Please email(Mao-Pei.Tsui@math.utoledo.edu) me if you find any mistake.

(1) Solving (2y − y2)(1 + x2y2) = 0, we get 2y − y2 = y(2 − y) = 0 and y = 0 or

y = 2. Note that 1 + x2y2 > 0.

We know that y = 0 and y = 2 are solutions to dy
dx

= (2y − y2)(1 + x2y2).

Suppose 2 < y(0) , we have y(x) is decreasing to 2.

Suppose y(0) = 2, we have y(x) = 2 .

Suppose 0 < y(0) < 2 , we have y(x) is increasing to 2.

Suppose y(0) = 0, we have y(x) = 0 .

Suppose y(0) < 0 , we have y(x) is decreasing to −∞.

(2) (a) Let v = ax + by + c. Since dv
dx

= a + b dy
dx

and dy
dx

= F (ax + by + c), we have
dv
dx

= a + bF (ax + by + c) = a + bF (v). Thus
∫

dv
a+bF (v)

=
∫

dx.

(b) Let v = x + y + 1. Since dv
dx

= 1 + dy
dx

and dy
dx

= (x + y + 1)2 = v2, we have
dv
dx

= 1 + v2. Thus
∫

dv
1+v2 =

∫
dx, arctan(v) = x + c and v = tan(x + c).

Recall that v = x + y + 1, we have y = v − x− 1 = tan(x + c)− x− 1.

(3) (a) Let v = y
x
, i.e. y = xv. Using dy

dx
= v + x dv

dx
and dy

dx
= F ( y

x
) = F (v), we

have v +x dv
dx

= F (v). It can be rewritten as x dv
dx

= F (v)− v which can be

solved by
∫

dv
F (v)−v

=
∫

dx
x
.

(b) The equation x2 dy
dx

= y2 + xy − x2 can be simplified as dy
dx

= y2+xy−x2

x2 =

( y
x
)2 + y

x
− 1. Let v = y

x
. Note that ( y

x
)2 + y

x
− 1 = v2 + v − 1. Following

the same computation as above, we have x dv
dx

= v2 − 1. (Using y = vx

and dy
dx

= v + x dv
dx

, we get v + x dv
dx

= v2 + v − 1.)

It can be solved by
∫

dv
v2−1

=
∫

dx
x
. Note that

∫
dv

v2−1
=

∫
1

2(v−1)
− 1

2(v+1)
dv =

1
2
ln |v−1

v+1
|+D. Hence 1

2
ln |v−1

v+1
| = ln |x|+C and ln |v−1

v+1
| = 2 ln |x|+c = ln |x|2+c.

Therefore v−1
v+1

= Cx2 and v = 1+Cx2

1−Cx2 . Recall that v = y
x
. It follows that

y = xv = x · 1+Cx2

1−Cx2 .

(4) (a) Separate the equation, we have
∫

(3y2 − 6y)dy =
∫

2xdx and y3 − 3y2 =

x2 + C. Plugging y(0) = 1, we have C = −2 Thus the solution (x, y)

satisfies y3 − 3y2 = x2 − 2. From the equation y′ = 2x
3y2−6y

, we know that

the solution y will not exist if 3y2 − 6y = 3y(y − 2) = 0, that is y = 0

and y = 2. If y = 0, we have 0 = x2 − 2, i.e. x = ±√2. From the
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graph in Figure 3, we know that the solution exists on the interval

−√2 < x <
√

2.

(b) Using y3 − 3y2 = x2 + C and y(
√

18) = 4, we have 64 − 48 = 18 + C and

C = −2. So the solution (x, y) satisfies y3−3y2 = x2−2. From the graph

of y3 − 3y2 = x2 − 2, we know that the solution exists on the interval

−∞ < x < ∞.

(5) (a) y(t) = 2t
3

+ 1
9

+ Ce−3t.Thus limt→∞ y(t)− 2t
3
− 1

9
= 0.

(µ(t) = e
R

3dt = e3t. y(t) =
R

µ(t)(2t+1)dt

µ(t)
=

R
e3t(2t+1)dt

e3t =
2t
3

e3t+ 1
9
e3t+C

e3t = 2t
3

+ 1
9

+

Ce−3t.)

(b) y(t) = 1
4
e−t + (y0 − 1

4
)e3t. Note that limt→∞ e3t = ∞ and limt→∞ e−t = 0.

The condition y0 < 1
4

will imply that limt→∞ y(t) = −∞.

(µ(t) = e
R −3dt = e−3t. y(t) =

R
µ(t)(−e−t)dt

µ(t)
=

R
e−3t(−e−t)dt

e−3t =
1
4
e−4t+C

e−3t = 1
4
e−t +

Ce3t. Use y(0) = y0. We have C = y0 − 1
4
.)

(c) y(t) = t3 ln |t|+ Ct3.

( Rewrite t3 + 3y − tdy
dt

= 0 as −tdy
dt

+ 3y = −t3.

Dividing the equation by −t, we get y′ − 3
t
y = t2.

We have p(t) = −3
t

and g(t) = t2.

The integrating factor is µ(t) = e
R

p(t)dt = e
R − 3

t
dt = e−3 ln t = eln t−3

= t−3.

So y(t) =
R

µ(t)g(t)dt

µ(t)
=

R
t−3t2dt

t−3 =
R

t−1dt

t−3 = ln |t|+C
t−3 = t3 ln |t|+ Ct3. )

(d) y(t) = (t2+t)√
2t+1

+ C√
2t+1

.

( Dividing the equation by 2t + 1, we get y′ + 1
2t+1

y = (2t + 1)
1
2 . The

integrating factor is µ(t) = e
R

1
2t+1

dt = e
1
2

ln |2t+1| = eln |2t+1| 12 = |2t + 1| 12 . So

y(t) =
R |2t+1| 12 · (2t+1)

1
2 dt

|2t+1| 12
=

R
(2t+1)dt

(2t+1)
1
2

= t2+t+C

(2t+1)
1
2

= (t2+t)√
2t+1

+ C√
2t+1

. )

(e) Rewrite the equation tdy
dt

= 6y + 12t4y
2
3 as y′ = 6

t
y + 12t3y

2
3 = 0.

Let v = y1− 2
3 = y

1
3 . Then dv

dt
= 1

3
y−

2
3

dy
dt

= 1
3
y−

2
3 (6

t
y + 12t3y

2
3 ) = 2

t
y

1
3 + 4t3 =

2
t
v + 4t3.

So dv
dt
− 2

t
v = 4t3. The integrating factor is µ(t) = e

R − 2
t
dt = e−2 ln t = t−2.

The solution of dv
dt
− 2

t
v = 4t3 is v(t) =

R
µ(t)4t3

µ(t)
=

R
t−2 · 4t3dt

t−2 =
R

4tdt

t−2 = 2t2+C
t−2 =

2t4 + Ct2. Recall that v = y
1
3 . We have y = v3 and y = v3 = (2t4 + Ct2)3.

(f) This can be rewritten as dy
dx

= 5x4y2− 4x2y2 = y2(5x4− 4x2). The general

solution is y = −1
x5− 4

3
x3+C

.

(g) Let M = 6xy3 +2y4 and N = 9x2y2 +8xy3 +y3. Note that My = 18xy2 +8y3

and Nx = 18xy2 + 8y3. Now My = Nx. This equation is exact. Solving

Fx = 6xy3 + 2y4, we have F =
∫

(6xy3 + 2y4)dx = 3x2y3 + 2xy4 + g(y). Using

Fy = N = 9x2y2 +8xy3 + y3, we get (3x2y3 +2xy4 + g(y))y = 9x2y2 +8xy3 +y3
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and 9x2y2 + 8xy3 + g′(y) = 9x2y2 + 8xy3 + y3. So g′(y) = y3 and g(y) =∫
y3dy = y4

4
. Hence F (x, y) = 3x2y3 + 2xy4 + y4

4
and the solution satisfies

F (x, y) = 3x2y3 + 2xy4 + y4

4
= C.

(h) ey + y cos(x) + (xey + sin(x) + ey) dy
dx

= 0

Let M = ey +y cos(x) and N = xey +sin(x)+ey. Note that My = ey +cos(x)

and Nx = ey + cos(x). Now My = Nx. This equation is exact. Solving

Fx = ey + y cos(x), we have F =
∫

(ey + y cos(x))dx = xey + y sin(x) + g(y).

Using Fy = N = xey + sin(x) + ey, we get (xey + y sin(x) + g(y))y = xey +

sin(x) + ey and xey + sin(x) + g′(y) = xey + sin(x) + ey. So g′(y) = ey and

g(y) =
∫

eydy = ey. Hence F (x, y) = xey + sin(x)y + ey and the solution

satisfies F (x, y) = xey + sin(x)y + ey = C.

(i) Rewrite the equation 2x2y − x3 dy
dx

= y3 as y′ − 2
x
y = − y3

x3 .

Let v = y1−3 = y−2. Then dv
dx

= −2y−3 dy
dx

= −2y−3( 2
x
y − y3

x3 ) = − 4
x
y−2 + 2

x3 =

− 4
x
v + 2

x3 .

So dv
dx

+ 4
x
v = 2

x3 . The integrating factor is µ(x) = e
R

4
x

dx = e4 ln x = x4. The

solution of dv
dx

+ 4
x
v = 2

x3 is v(x) =
R

µ(x) 2
x3

µ(x)
=

R
x4 · 2

x3 dx

x4 =
R

2xdx

x4 = x2+C
x4 = x−2+

Cx−4. Recall that v = y−2. We have y = ±v−
1
2 and y = ±(x−2 + Cx−4)−

1
2 .

(6) Obviously, y1(t) = 0 is a solution of dy
dt

= y sin(x)
1+t2+y2 . Now we have y(0) =

−2 < 0 = y1(0). Obviously, the solution to dy
dt

= y sin(x)
1+t2+y2 is unique. We have

y(t) < y1(0) = 0, i.e. y is always negative.

(7) The equation (9 − t2)dy
dt

+ y
t

= cos(t) can be rewritten as dy
dt

+ 1
t(3−t)(3+t)

y =
cos(t)

(3−t)(3+t)
. Both 1

t(3−t)(3+t)
and cos(t)

(3−t)(3+t)
are continuous on (−∞,−3) ∪ (−3, 0) ∪

(0, 3) ∪ (0,∞).

(a) Since −1 ∈ (−3, 0), this solution exists on the interval (−3, 0).

(b) Since 1 ∈ (0, 3), this solution exists on the interval (0, 3).

(c) Since 4 ∈ (3,∞), this solution exists on the interval (3,∞).

(d) Since −4 ∈ (−∞,−3), this solution exists on the interval (−∞,−3).

(8) In each problem, determine the equilibrium points, and classify each one

as asymptotically stable, unstable, or semistable.

(a) The equilibrium points are y = kπ where k is an integer. Since

y2 sin2(y) > 0 if y 6= kπ, we know that all the equilibrium points are

semistable.

(b) The equilibrium points are y = kπ where k is an integer. The sign

graph of y sin(y) and sin(y) is the same when y > 0. The sign graph

of y sin(y) and − sin(y) is the same when y < 0. Thus y sin(y) > 0

when 2kπ < y < (2k + 1)π or −(2k + 1)π < y < −2kπ where k is
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an nonnegative integer. Thus y sin(y) < 0 when (2k + 1)π < y <

(2k + 2)π or −(2k + 2)π < y < −(2k + 1)π where k is an nonnegative

integer. Thus 0 is an semistable equilibrium point. {π, 3π, 5π, · · · }
and {−2π,−4π,−6π, · · · } are asymptotically stable equilibrium points.

{2π, 4π, 6π, · · · } and {−π,−3π,−5π, · · · } are unstable equilibrium points.

(c) Let f(y) = (−y3 +3y2−2y)(y−3)2. We have f(y) = −y(y2−3y+2)(y−3)2 =

−y(y−1)(y−2)(y−3)2. Thus f(y) > 0 when y ∈ (−∞, 0)∪(1, 2) and f(y) < 0

when y ∈ (0, 1) ∪ (2, 3) ∪ (3,∞). Therefore {0, 2} are are asymptotically

stable equilibrium points, 1 is an unstable equilibrium point and 3 is

a semistable equilibrium point.

(d) Let f(y) = y3 − 3y2 + 2y = y(y − 1)(y − 2). Thus f(y) > 0 when y ∈
(0, 1) ∪ (2,∞) and f(y) < 0 y ∈ (−∞, 0) ∪ (1, 2). Hence y = 1 are are

asymptotically stable equilibrium points, y = 0 and y = 2 are unstable

equilibrium points.


