Solution to Review Problems for Midterm I
 MATH 3860-002

Disclaimer: My solution is only correct up to a constant. Please email(Mao-Pei.Tsui@math.utoledo.edu) me if you find any mistake.
(1) Solving $\left(2 y-y^{2}\right)\left(1+x^{2} y^{2}\right)=0$, we get $2 y-y^{2}=y(2-y)=0$ and $y=0$ or $y=2$. Note that $1+x^{2} y^{2}>0$.

We know that $y=0$ and $y=2$ are solutions to $\frac{d y}{d x}=\left(2 y-y^{2}\right)\left(1+x^{2} y^{2}\right)$. Suppose $2<y(0)$, we have $y(x)$ is decreasing to 2 .
Suppose $y(0)=2$, we have $y(x)=2$.
Suppose $0<y(0)<2$, we have $y(x)$ is increasing to 2.
Suppose $y(0)=0$, we have $y(x)=0$.
Suppose $y(0)<0$, we have $y(x)$ is decreasing to $-\infty$.
(2) (a) Let $v=a x+b y+c$. Since $\frac{d v}{d x}=a+b \frac{d y}{d x}$ and $\frac{d y}{d x}=F(a x+b y+c)$, we have $\frac{d v}{d x}=a+b F(a x+b y+c)=a+b F(v)$. Thus $\int \frac{d v}{a+b F(v)}=\int d x$.
(b) Let $v=x+y+1$. Since $\frac{d v}{d x}=1+\frac{d y}{d x}$ and $\frac{d y}{d x}=(x+y+1)^{2}=v^{2}$, we have $\frac{d v}{d x}=1+v^{2}$. Thus $\int \frac{d v}{1+v^{2}}=\int d x, \arctan (v)=x+c$ and $v=\tan (x+c)$. Recall that $v=x+y+1$, we have $y=v-x-1=\tan (x+c)-x-1$.
(3) (a) Let $v=\frac{y}{x}$, i.e. $y=x v$. Using $\frac{d y}{d x}=v+x \frac{d v}{d x}$ and $\frac{d y}{d x}=F\left(\frac{y}{x}\right)=F(v)$, we have $v+x \frac{d v}{d x}=F(v)$. It can be rewritten as $x \frac{d v}{d x}=F(v)-v$ which can be solved by $\int \frac{d v}{F(v)-v}=\int \frac{d x}{x}$.
(b) The equation $x^{2} \frac{d y}{d x}=y^{2}+x y-x^{2}$ can be simplified as $\frac{d y}{d x}=\frac{y^{2}+x y-x^{2}}{x^{2}}=$ $\left(\frac{y}{x}\right)^{2}+\frac{y}{x}-1$. Let $v=\frac{y}{x}$. Note that $\left(\frac{y}{x}\right)^{2}+\frac{y}{x}-1=v^{2}+v-1$. Following the same computation as above, we have $x \frac{d v}{d x}=v^{2}-1$. (Using $y=v x$ and $\frac{d y}{d x}=v+x \frac{d v}{d x}$, we get $v+x \frac{d v}{d x}=v^{2}+v-1$.)
It can be solved by $\int \frac{d v}{v^{2}-1}=\int \frac{d x}{x}$. Note that $\int \frac{d v}{v^{2}-1}=\int \frac{1}{2(v-1)}-\frac{1}{2(v+1)} d v=$ $\frac{1}{2} \ln \left|\frac{v-1}{v+1}\right|+D$. Hence $\frac{1}{2} \ln \left|\frac{v-1}{v+1}\right|=\ln |x|+C$ and $\ln \left|\frac{v-1}{v+1}\right|=2 \ln |x|+c=\ln |x|^{2}+c$. Therefore $\frac{v-1}{v+1}=C x^{2}$ and $v=\frac{1+C x^{2}}{1-C x^{2}}$. Recall that $v=\frac{y}{x}$. It follows that $y=x v=x \cdot \frac{1+C x^{2}}{1-C x^{2}}$.
(4) (a) Separate the equation, we have $\int\left(3 y^{2}-6 y\right) d y=\int 2 x d x$ and $y^{3}-3 y^{2}=$ $x^{2}+C$. Plugging $y(0)=1$, we have $C=-2$ Thus the solution (x, y) satisfies $y^{3}-3 y^{2}=x^{2}-2$. From the equation $y^{\prime}=\frac{2 x}{3 y^{2}-6 y}$, we know that the solution y will not exist if $3 y^{2}-6 y=3 y(y-2)=0$, that is $y=0$ and $y=2$. If $y=0$, we have $0=x^{2}-2$, i.e. $x= \pm \sqrt{2}$. From the page 1 of 4
graph in Figure 3, we know that the solution exists on the interval $-\sqrt{2}<x<\sqrt{2}$.
(b) Using $y^{3}-3 y^{2}=x^{2}+C$ and $y(\sqrt{18})=4$, we have $64-48=18+C$ and $C=-2$. So the solution (x, y) satisfies $y^{3}-3 y^{2}=x^{2}-2$. From the graph of $y^{3}-3 y^{2}=x^{2}-2$, we know that the solution exists on the interval $-\infty<x<\infty$.
(a) $y(t)=\frac{2 t}{3}+\frac{1}{9}+C e^{-3 t}$.Thus $\lim _{t \rightarrow \infty} y(t)-\frac{2 t}{3}-\frac{1}{9}=0$.
$\left(\mu(t)=e^{\int 3 d t}=e^{3 t} . y(t)=\frac{\int \mu(t)(2 t+1) d t}{\mu(t)}=\frac{\int e^{3 t}(2 t+1) d t}{e^{3 t}}=\frac{\frac{2 t}{3} e^{3 t}+\frac{1}{9} e^{3 t}+C}{e^{3 t}}=\frac{2 t}{3}+\frac{1}{9}+\right.$ $C e^{-3 t}$.)
(b) $y(t)=\frac{1}{4} e^{-t}+\left(y_{0}-\frac{1}{4}\right) e^{3 t}$. Note that $\lim _{t \rightarrow \infty} e^{3 t}=\infty$ and $\lim _{t \rightarrow \infty} e^{-t}=0$. The condition $y_{0}<\frac{1}{4}$ will imply that $\lim _{t \rightarrow \infty} y(t)=-\infty$.
$\left(\mu(t)=e^{\int-3 d t}=e^{-3 t} \cdot y(t)=\frac{\int \mu(t)\left(-e^{-t}\right) d t}{\mu(t)}=\frac{\int e^{-3 t}\left(-e^{-t}\right) d t}{e^{-3 t}}=\frac{\frac{1}{4} e^{-4 t}+C}{e^{-3 t}}=\frac{1}{4} e^{-t}+\right.$ $C e^{3 t}$. Use $y(0)=y_{0}$. We have $C=y_{0}-\frac{1}{4}$.)
(c) $y(t)=t^{3} \ln |t|+C t^{3}$.
(Rewrite $t^{3}+3 y-t \frac{d y}{d t}=0$ as $-t \frac{d y}{d t}+3 y=-t^{3}$.
Dividing the equation by $-t$, we get $y^{\prime}-\frac{3}{t} y=t^{2}$.
We have $p(t)=-\frac{3}{t}$ and $g(t)=t^{2}$.
The integrating factor is $\mu(t)=e^{\int p(t) d t}=e^{\int-\frac{3}{t} d t}=e^{-3 \ln t}=e^{\ln t^{-3}}=t^{-3}$. So $y(t)=\frac{\int \mu(t) g(t) d t}{\mu(t)}=\frac{\int t^{-3} t^{2} d t}{t^{-3}}=\frac{\int t^{-1} d t}{t^{-3}}=\frac{\ln |t|+C}{t^{-3}}=t^{3} \ln |t|+C t^{3}$.)
(d) $y(t)=\frac{\left(t^{2}+t\right)}{\sqrt{2 t+1}}+\frac{C}{\sqrt{2 t+1}}$.
(Dividing the equation by $2 t+1$, we get $y^{\prime}+\frac{1}{2 t+1} y=(2 t+1)^{\frac{1}{2}}$. The integrating factor is $\mu(t)=e^{\int \frac{1}{2 t+1} d t}=e^{\frac{1}{2} \ln |2 t+1|}=e^{\ln |2 t+1|^{\frac{1}{2}}}=|2 t+1|^{\frac{1}{2}}$. So $\left.y(t)=\frac{\int|2 t+1|^{\frac{1}{2}} \cdot(2 t+1)^{\frac{1}{2}} d t}{|2 t+1|^{\frac{1}{2}}}=\frac{\int(2 t+1) d t}{(2 t+1)^{\frac{1}{2}}}=\frac{t^{2}+t+C}{(2 t+1)^{\frac{1}{2}}}=\frac{\left(t^{2}+t\right)}{\sqrt{2 t+1}}+\frac{C}{\sqrt{2 t+1}}.\right)$
(e) Rewrite the equation $t \frac{d y}{d t}=6 y+12 t^{4} y^{\frac{2}{3}}$ as $y^{\prime}=\frac{6}{t} y+12 t^{3} y^{\frac{2}{3}}=0$.

Let $v=y^{1-\frac{2}{3}}=y^{\frac{1}{3}}$. Then $\frac{d v}{d t}=\frac{1}{3} y^{-\frac{2}{3}} \frac{d y}{d t}=\frac{1}{3} y^{-\frac{2}{3}}\left(\frac{6}{t} y+12 t^{3} y^{\frac{2}{3}}\right)=\frac{2}{t} y^{\frac{1}{3}}+4 t^{3}=$ $\frac{2}{t} v+4 t^{3}$.
So $\frac{d v}{d t}-\frac{2}{t} v=4 t^{3}$. The integrating factor is $\mu(t)=e^{\int-\frac{2}{t} d t}=e^{-2 \ln t}=t^{-2}$. The solution of $\frac{d v}{d t}-\frac{2}{t} v=4 t^{3}$ is $v(t)=\frac{\int \mu(t) 4 t^{3}}{\mu(t)}=\frac{\int t^{-2} \cdot 4 t^{3} d t}{t^{-2}}=\frac{\int 4 t d t}{t^{-2}}=\frac{2 t^{2}+C}{t^{-2}}=$ $2 t^{4}+C t^{2}$. Recall that $v=y^{\frac{1}{3}}$. We have $y=v^{3}$ and $y=v^{3}=\left(2 t^{4}+C t^{2}\right)^{3}$.
(f) This can be rewritten as $\frac{d y}{d x}=5 x^{4} y^{2}-4 x^{2} y^{2}=y^{2}\left(5 x^{4}-4 x^{2}\right)$. The general solution is $y=\frac{-1}{x^{5}-\frac{4}{3} x^{3}+C}$.
(g) Let $M=6 x y^{3}+2 y^{4}$ and $N=9 x^{2} y^{2}+8 x y^{3}+y^{3}$. Note that $M_{y}=18 x y^{2}+8 y^{3}$ and $N_{x}=18 x y^{2}+8 y^{3}$. Now $M_{y}=N_{x}$. This equation is exact. Solving $F_{x}=6 x y^{3}+2 y^{4}$, we have $F=\int\left(6 x y^{3}+2 y^{4}\right) d x=3 x^{2} y^{3}+2 x y^{4}+g(y)$. Using $F_{y}=N=9 x^{2} y^{2}+8 x y^{3}+y^{3}$, we get $\left(3 x^{2} y^{3}+2 x y^{4}+g(y)\right)_{y}=9 x^{2} y^{2}+8 x y^{3}+y^{3}$
and $9 x^{2} y^{2}+8 x y^{3}+g^{\prime}(y)=9 x^{2} y^{2}+8 x y^{3}+y^{3}$. So $g^{\prime}(y)=y^{3}$ and $g(y)=$ $\int y^{3} d y=\frac{y^{4}}{4}$. Hence $F(x, y)=3 x^{2} y^{3}+2 x y^{4}+\frac{y^{4}}{4}$ and the solution satisfies $F(x, y)=3 x^{2} y^{3}+2 x y^{4}+\frac{y^{4}}{4}=C$.
(h) $e^{y}+y \cos (x)+\left(x e^{y}+\sin (x)+e^{y}\right) \frac{d y}{d x}=0$

Let $M=e^{y}+y \cos (x)$ and $N=x e^{y}+\sin (x)+e^{y}$. Note that $M_{y}=e^{y}+\cos (x)$ and $N_{x}=e^{y}+\cos (x)$. Now $M_{y}=N_{x}$. This equation is exact. Solving $F_{x}=e^{y}+y \cos (x)$, we have $F=\int\left(e^{y}+y \cos (x)\right) d x=x e^{y}+y \sin (x)+g(y)$. Using $F_{y}=N=x e^{y}+\sin (x)+e^{y}$, we get $\left(x e^{y}+y \sin (x)+g(y)\right)_{y}=x e^{y}+$ $\sin (x)+e^{y}$ and $x e^{y}+\sin (x)+g^{\prime}(y)=x e^{y}+\sin (x)+e^{y}$. So $g^{\prime}(y)=e^{y}$ and $g(y)=\int e^{y} d y=e^{y}$. Hence $F(x, y)=x e^{y}+\sin (x) y+e^{y}$ and the solution satisfies $F(x, y)=x e^{y}+\sin (x) y+e^{y}=C$.
(i) Rewrite the equation $2 x^{2} y-x^{3} \frac{d y}{d x}=y^{3}$ as $y^{\prime}-\frac{2}{x} y=-\frac{y^{3}}{x^{3}}$.

Let $v=y^{1-3}=y^{-2}$. Then $\frac{d v}{d x}=-2 y^{-3} \frac{d y}{d x}=-2 y^{-3}\left(\frac{2}{x} y-\frac{y^{3}}{x^{3}}\right)=-\frac{4}{x} y^{-2}+\frac{2}{x^{3}}=$ $-\frac{4}{x} v+\frac{2}{x^{3}}$.
So $\frac{d v}{d x}+\frac{4}{x} v=\frac{2}{x^{3}}$. The integrating factor is $\mu(x)=e^{\int \frac{4}{x} d x}=e^{4 \ln x}=x^{4}$. The solution of $\frac{d v}{d x}+\frac{4}{x} v=\frac{2}{x^{3}}$ is $v(x)=\frac{\int \mu(x) \frac{2}{x^{3}}}{\mu(x)}=\frac{\int x^{4} \cdot \frac{2}{x^{3}} d x}{x^{4}}=\frac{\int 2 x d x}{x^{4}}=\frac{x^{2}+C}{x^{4}}=x^{-2}+$ $C x^{-4}$. Recall that $v=y^{-2}$. We have $y= \pm v^{-\frac{1}{2}}$ and $y= \pm\left(x^{-2}+C x^{-4}\right)^{-\frac{1}{2}}$.
(6) Obviously, $y_{1}(t)=0$ is a solution of $\frac{d y}{d t}=\frac{y \sin (x)}{1+t^{2}+y^{2}}$. Now we have $y(0)=$ $-2<0=y_{1}(0)$. Obviously, the solution to $\frac{d y}{d t}=\frac{y \sin (x)}{1+t^{2}+y^{2}}$ is unique. We have $y(t)<y_{1}(0)=0$, i.e. y is always negative.
(7) The equation $\left(9-t^{2}\right) \frac{d y}{d t}+\frac{y}{t}=\cos (t)$ can be rewritten as $\frac{d y}{d t}+\frac{1}{t(3-t)(3+t)} y=$ $\frac{\cos (t)}{(3-t)(3+t)}$. Both $\frac{1}{t(3-t)(3+t)}$ and $\frac{\cos (t)}{(3-t)(3+t)}$ are continuous on $(-\infty,-3) \cup(-3,0) \cup$ $(0,3) \cup(0, \infty)$.
(a) Since $-1 \in(-3,0)$, this solution exists on the interval $(-3,0)$.
(b) Since $1 \in(0,3)$, this solution exists on the interval $(0,3)$.
(c) Since $4 \in(3, \infty)$, this solution exists on the interval $(3, \infty)$.
(d) Since $-4 \in(-\infty,-3)$, this solution exists on the interval $(-\infty,-3)$.
(8) In each problem, determine the equilibrium points, and classify each one as asymptotically stable, unstable, or semistable.
(a) The equilibrium points are $y=k \pi$ where k is an integer. Since $y^{2} \sin ^{2}(y)>0$ if $y \neq k \pi$, we know that all the equilibrium points are semistable.
(b) The equilibrium points are $y=k \pi$ where k is an integer. The sign graph of $y \sin (y)$ and $\sin (y)$ is the same when $y>0$. The sign graph of $y \sin (y)$ and $-\sin (y)$ is the same when $y<0$. Thus $y \sin (y)>0$ when $2 k \pi<y<(2 k+1) \pi$ or $-(2 k+1) \pi<y<-2 k \pi$ where k is
an nonnegative integer. Thus $y \sin (y)<0$ when $(2 k+1) \pi<y<$ $(2 k+2) \pi$ or $-(2 k+2) \pi<y<-(2 k+1) \pi$ where k is an nonnegative integer. Thus 0 is an semistable equilibrium point. $\{\pi, 3 \pi, 5 \pi, \cdots\}$ and $\{-2 \pi,-4 \pi,-6 \pi, \cdots\}$ are asymptotically stable equilibrium points. $\{2 \pi, 4 \pi, 6 \pi, \cdots\}$ and $\{-\pi,-3 \pi,-5 \pi, \cdots\}$ are unstable equilibrium points.
(c) Let $f(y)=\left(-y^{3}+3 y^{2}-2 y\right)(y-3)^{2}$. We have $f(y)=-y\left(y^{2}-3 y+2\right)(y-3)^{2}=$ $-y(y-1)(y-2)(y-3)^{2}$. Thus $f(y)>0$ when $y \in(-\infty, 0) \cup(1,2)$ and $f(y)<0$ when $y \in(0,1) \cup(2,3) \cup(3, \infty)$. Therefore $\{0,2\}$ are are asymptotically stable equilibrium points, 1 is an unstable equilibrium point and 3 is a semistable equilibrium point.
(d) Let $f(y)=y^{3}-3 y^{2}+2 y=y(y-1)(y-2)$. Thus $f(y)>0$ when $y \in$ $(0,1) \cup(2, \infty)$ and $f(y)<0 y \in(-\infty, 0) \cup(1,2)$. Hence $y=1$ are are asymptotically stable equilibrium points, $y=0$ and $y=2$ are unstable equilibrium points.

