Solution to Review Problems for Midterm |
MATH 3860 — 002

Disclaimer: My solution is only correct up to a constant.
Please email(Mao-Pei.Tsui@math.utoledo.edu) me if you find any mistake.

(1) Solving (2y — y*)(1 + 2%y?) = 0, we get 2y —y?> = y(2 —y) = 0 and y = 0 or
y = 2. Note that 1+ a:zy > 0.
We know that y = 0 and y = 2 are solutions to % = (2y — ?)(1 + 2%?).
Suppose 2 < y(0) , we have y(z) is decreasing to 2.
Suppose y(0) = 2, we have y(z) =2 .
Suppose 0 < y(0) < 2, we have y(z) is increasing to 2.
Suppose y(0) = 0, we have y(z) =0 .
Suppose y(0) < 0 , we have y(z) is decreasing to —oc.

(2) ()
(b)

(3) ()

(b)

(4) ()

Y

Let v = ax + by + c. Since 2 =a+b% and & = F(az + by + c), we have

g;_a—l—bF(ax—i-by—Fc)—a—i-bF() Thusfa+bp = [ da.

Letv—a:+y+1. Sinceﬁzl—l—j—i and jz:(a:+y+1) = 0%, we have

B =142 Thus [&; = [dr, arctan(v) = x + ¢ and v = tan(z + c).

dx 1+v2

Recall that v=x+y+1, we have y=v—z—1=tan(z +c¢) —x — 1.

Let v = £ ,1e y = zv. Using dy:v+xd— andg—z:F(%):F(v), we
have v+9: = F(v). It can be rewritten as x;l“ = F'(v) —v which can be

da:
solved by fFv) - = [
2 2
The equation xQ dy = y? + 2y — 2° can be simplified as d—g = f”fﬁ# =
(4)? + 2 —1. Letv—y. Note that (£)*4+ % —1 = v?> 4+ v — 1. Following
dv

the same computatlon as above, we have T = =v? — 1. (Using y = vx
and % =0+ 2%, we get v+ 2% =0 +0v—1.)
It can be solved by [ = [ d“ Note that [ £~ = [ 2(U£1) dv =

v+1
11n\v+1]—|—D Hencelln|” L

|z|+c=1In ]x\Z—i—c
Therefore “jrl Cz? and v = }fgiz Recall that v = . It follows that
y=zv=2z- }fg;

Separate the equation, we have [(3y? — 6y)dy = [2xdx and y* — 3y* =
2?2 + C. Plugging y(O) = 1, we have C' = —2 Thus the solution (z,y)

satisfies v — 3y? = 22 — 2. From the equation ¢’ = 5 22“”6 , we know that

the solution y will not exist if 3y*> — 6y = 3y(y 2) =0, that is y = 0

and y = 2. If y = 0, we have 0 = 2> — 2, i.e. 2 = +v/2. From the
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(b)

(5) ()

(b)

(c)

(d)

(e)

(f)
(2)

graph in Figure 3, we know that the solution exists on the interval
V2 <z < V2
Using y® — 3y*> = 22 + C and y(v/18) = 4, we have 64 — 48 = 18 + C and
C = —2. So the solution (z,y) satisfies 3> — 3y? = 2? — 2. From the graph
of y? — 3y? = 22 — 2, we know that the solution exists on the interval
—00 < x < oo
y(t) =% 4+ + Ce . Thus lim;_ y(t) — % — § = 0.

2.3t 1
(ILL( ) _ efgdt _ €3t. y(t) _ fﬂ(t)lf?f)—l-l)dt fe3t 623tt+1)dt — 3e3it§te3t+c _ % + % +
Ce™3t)

y(t) = 17" + (yo — 3)e*. Note that lim;_ e* = oo and limy_oe™* = 0.
The condition y, < ; will imply that lim,_.. y(t) = —oo.

_ _ e t)d e 3t(—e t)d le—tty o _
(ult) = ef 2 = 7. y(r) = LA = Lo = S0gis = femr

Ce. Use y(0) = yo. We have C =y, — 1.)

y(t) = t31n |t| + Ct3.

( Rewrite 3 + 3y — tdy =0 as —tdy + 3y = —t3.
Dividing the equatlon by —t, we get 3/ — ty = t2.
We have p(t) = —2 and g(t) = t2.

t

The integrating factor is p(t) = e/PWd = of —3dt — =8Int — nt™ _ 4=3,
—342 -1
So y(t) = f'u(;)(i)(t)dt = ftt_g dt = fi_sdt = ln\tﬂ;rc = t3 In |t| + Ot?’. )

— (41 C
y(t) = s+ v 1
( Dividing the equation by 2t + 1, we get ¢ + 2t+1y = (2t + 1)2. The

integrating factor is p(t) = e/ 7% = e3nl2t+1 — en 212 2t + 1]2. So
1
" f\2t+1|§ (2t+1)?dt _ [@t+1) dt _ t2+t+o _ (240
y(t) = 2t+1]2 @+1)2 (412 V2 + \/2t+1 )
2 2
Rewrite th(z equatlon tdy = 6y + 12t*ys as iy = ; ;y + 123 yj 0. 1
Let v = y'~3 = y3. Then D — ;’yT% = sy 3 (Sy +126%3) = 2ys + 443 =
2u + 4t°.
So & — 2y = 4753 The integrating factor is pu(t) = ¢/ ~7d = ¢=2Int — -2,
The solution of & — 2y = 4t3 isv(t) = f“(t) = ft_z_'ftgdt = f;idt — Zf_tc —

2t* + Ct?. Recall that v=y3. We have y = v and y = v% = (2t* + Ct2)%.
This can be rewritten as Z—Z = brty? — 42%y? = y*(5x? — 42%). The general
1

solution is y = P v

Let M = 6xy®+2y* and N = 92%y*+8zy* +4°. Note that M, = 18xy*+ 8y*
and N, = 18zy* + 8y>. Now M, = N,. This equation is exact. Solving
F, = 6zy® +2y*, we have F = [(6xy®+ 2y*)dz = 32%y* + 22y* + g(y). Using
F, = N = 92%* + 8zy® + ¢*, we get (32%y® +2xy* + g(y)), = 92%y? + 8zy® +¢°



ODE Review: page 3 of 4 MAT MATH 3860- 002

(h)

and 9x2y24+ 8zy® + ¢'(y) = 92%y? + 8xy® + y3.4 So ¢'(y) = v* and g(y) =
Jy*dy = 4. Hence F(x,y) = 3z°y* 4+ 2zy" + % and the solution satisfies
F(x,y) = 3223 + 2xy* + %4 =C.
e¥ + ycos(z) + (ve¥ + sin(z) + e¥) % = 0
Let M = eY+ycos(z) and N = ze? +sin(z)+e¥. Note that M, = e¥ +cos(z)
and N, = e¥ 4 cos(z). Now M, = N,. This equation is exact. Solving
F, = ¢¥ 4+ ycos(z), we have F = [(e¥ + ycos(z))dx = ze¥ + ysin(z) + g(y).
Using F, = N = ze? +sin(z) + ¥, we get (ze¥ + ysin(z) + ¢(y)), = ve¥ +
sin(z) + e¥ and ze¥ + sin(z) + ¢'(y) = xe? + sin(x) + e¥. So ¢'(y) = ¢¥ and
= [e¥dy = ¢¥. Hence F(z,y) = xze¥ + sin(z)y + ¢V and the solution
satisfies F'(z,y) = xe¥ +sin(z)y + ¢¥ = C.

Rewrite the equatlon 207y — 2% =P as y — 2y = ys.

Let v = y'~ . Then 2 = zy*de = -2y~ (xy_ﬁ):_ﬁyfuf_gjz

—%v + %

So g—; + ﬁv = x% The integrating factor is pu(z) = e/ = Sdv _ oAz _ 44 Phe
4.l,d -

solution of £ +1y = 2 is v(z) = f“(:v) _ Iz il fi;“ = 240 — 24

Cz~*. Recall that v = y~2. We have y = +v72 and y = +(2 2+ Cz %) 2.

(6) Obviously, yi(t) = 0 is a solution of % = @) Now we have y(0) =

)
y(t)

(7) The equation (9 — t*)% + £ = cos(t) can be rewritten as % + (

cos(t)
m . BOth

(3

T4+824y2
< 0 =(0). Obviously, the solution to % = L)

is unique. We have
< y1(0) =0, i.e. y is always negative.

1 _
BBt Y =

and 28 __ are continuous on (—oo0, —3) U (—3,0) U

1
1(3—1)(3+1) (B=1)(3+1)

(0,3) U (0, 00).

(a)
(b)
(c)
(d)

Since —1 € (—3,0), this solution exists on the interval (—3,0).
Since 1 € (0,3), this solution exists on the interval (0, 3).

Since 4 € (3,00), this solution exists on the interval (3, c0).

Since —4 € (—o0, —3), this solution exists on the interval (—oo, —3).

(8) In each problem, determine the equilibrium points, and classify each one
as asymptotically stable, unstable, or semistable.

(a)

(b)

The equilibrium points are y = km where k is an integer. Since
y?sin®(y) > 0 if y # kn, we know that all the equilibrium points are
semistable.

The equilibrium points are y = knm where k is an integer. The sign
graph of ysin(y) and sin(y) is the same when y > 0. The sign graph
of ysin(y) and —sin(y) is the same when y < 0. Thus ysin(y) > 0
when 2kr < y < (2k+ )m or —(2k + 1)1 < y < —2km where k is
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(d)

an nonnegative integer. Thus ysin(y) < 0 when 2k + ) < y <
(2k + 2)m or —(2k +2)7 < y < —(2k 4+ 1) where k is an nonnegative
integer. Thus 0 is an semistable equilibrium point. {m, 37, 57, -}
and {27, —4m,—6m, -} are asymptotically stable equilibrium points.
{27,4m, 67, -} and {—7m, =37, —5m, - } are unstable equilibrium points.
Let f(y) = (=y°+3y°—2y)(y—3)*>. We have f(y) = —y(y*—3y+2)(y—3)* =
—y(y—1)(y—2)(y—3)% Thus f(y) > 0 when y € (—00,0)U(1,2) and f(y) <0
when y € (0,1) U (2,3) U (3,00). Therefore {0,2} are are asymptotically
stable equilibrium points, 1 is an unstable equilibrium point and 3 is
a semistable equilibrium point.

Let f(y) = v> —3y* +2y = yly — 1)(y — 2). Thus f(y) > 0 when y €
(0,1) U (2,00) and f(y) < 0 y € (—00,0) U (1,2). Hence y = 1 are are
asymptotically stable equilibrium points, y = 0 and y = 2 are unstable
equilibrium points.



