Review Problems for Midterm II

- (1) Find the interval of existence of the following initial value problems.

 - (a) $(t^2 16)y''(t) + ty'(t) + \frac{9}{t-3}y = 0$, y(2) = 1 and y'(2) = 2. (b) $(t^2 16)y''(t) + ty'(t) + \frac{9}{t-3}y = 0$, y(-1) = 1 and y'(-1) = 2
- (2) (a) Find the Wronskian of two solutions of the given differential equation without solving the equation. $x^2y''(x) + xy'(x) + x^2y(x) = 0$.
 - (b) If y_1 and y_2 are two independent solutions of $x^2y''(x) + xy'(x) + x^2y(x) = 0$ and $W(y_1, y_2)(1) = 5$. Find $W(y_1, y_2)(t)$.
- (3) Find the general solution of the following differential equations.
 - (a) y''(t) + 6y'(t) + 9y = 0.
 - (b) y''(t) + 5y'(t) + 4y = 0.
 - (c) y''(t) + 4y'(t) + 5y = 0.
 - (d) $t^2y''(t) + 7ty'(t) + 8y(t) = 0$.
 - (e) $t^2y''(t) + 7ty'(t) + 10y(t) = 0$.
 - (f) $t^2y''(t) + 5ty'(t) + 4y(t) = 0$.
 - (g) $t^2y''(t) + ty'(t) + 9y = 0$.
- (4) Find the solution of the following initial value problems.
 - (a) y''(t) + 4y'(t) + 5y = 0, y(0) = 1 and y'(0) = 3.
 - (b) $t^2y''(t) + 7ty'(t) + 10y(t) = 0$, y(1) = 2 and y'(1) = -5.
- (5) In the following problems, a differential and one solution y_1 are given. Use the method of reduction of order to find the general solution solution.
 - (a) $t^2y''(t) t(t+2)y'(t) + (t+2)y(t) = 0; y_1(t) = t.$
 - (b) $(t+1)y''(t) (t+2)y'(t) + y(t) = 0; y_1(t) = e^t.$
- (6) Find the general solution of the following differential equations.
 - (a) $y''(t) + 5y'(t) + 6y(t) = e^t + \sin(t)$.
 - (b) $y''(t) + 4y = 2\sin(2t) + 3\cos(t)$
 - (c) $y''(t) + 4y = 4e^{4t}$
 - (d) $y''(t) + 4y + 4y(t) = e^{-2t} + e^{2t}$
 - (e) $y''(t) + 5y'(t) + 6y(t) = t^2 + 1$.
 - (f) $t^2y''(t) ty'(t) 3y(t) = 4t^2$.
 - (g) $y''(t) + 4y = \sec(2t)$
 - (h) $y''(t) + 4y = \tan(2t)$
 - (i) $t^2y''(t) t(t+2)y'(t) + (t+2)y(t) = t^4e^t(1+t)$.
 - Given that $y_1(t) = te^t$ is a solution of $t^2y''(t) t(t+2)y'(t) + (t+2)y(t) = 0$.
 - (j) $(1-t)y''(t) + ty'(t) y(t) = 2(t-1)^2e^{-t}$. Given that $y_1(t) = t$ is a solution of (1 - t)y''(t) + ty'(t) - y(t) = 0.