Solutions to Review Problems for Midterm III

(1) Find the general solution of the following differential equations.
(a) $y^{(6)}(t)+64 y(t)=0$.

The characteristic equation of $y^{(6)}(t)+64 y(t)=0$ is $r^{6}+64=0$. Note that $-64=64 e^{i(\pi+2 k \pi)}$ where k is an integer. Solving $r^{6}+64=0$ is the same as solving $r^{6}=-64=64 e^{i(\pi+2 k \pi)}$. Therefore $r=\sqrt[6]{64} e^{i \frac{(\pi+2 k \pi)}{6}}=2 e^{i \frac{(\pi+2 k \pi)}{6}}=$ $2\left(\cos \left(\frac{(\pi+2 k \pi)}{6}\right)+i \sin \left(\frac{(\pi+2 k \pi)}{6}\right)\right)$ where $k=0,1,2, \cdots, 5$.
Let $r_{k}=2\left(\cos \left(\frac{(\pi+2 k \pi)}{6}\right)+i \sin \left(\frac{(\pi+2 k \pi)}{6}\right)\right)$ where $k=0,1,2, \cdots, 5$. Therefore $r_{0}=2\left(\cos \left(\frac{\pi}{6}\right)+i \sin \left(\frac{\pi}{6}\right)\right)=\sqrt{3}+i, r_{1}=2\left(\cos \left(\frac{\pi}{2}\right)+i \sin \left(\frac{\pi}{2}\right)\right)=2 i, r_{2}=2\left(\cos \left(\frac{5 \pi}{6}\right)+\right.$ $\left.i \sin \left(\frac{5 \pi}{6}\right)\right)=-\sqrt{3}+i, r_{3}=2\left(\cos \left(\frac{7 \pi}{6}\right)+i \sin \left(\frac{7 \pi}{6}\right)\right)=-\sqrt{3}-i, r_{4}=2\left(\cos \left(\frac{3 \pi}{2}\right)+\right.$ $\left.i \sin \left(\frac{3 \pi}{2}\right)\right)=-2 i$ and $r_{5}=2\left(\cos \left(\frac{11 \pi}{6}\right)+i \sin \left(\frac{11 \pi}{6}\right)\right)=\sqrt{3}-i$. So the roots of characteristic equations are $\sqrt{3} \pm i, \pm 2 i$ and $-\sqrt{3} \pm i$.
The general solution is $y(t)=c_{1} e^{\sqrt{3} t} \cos (t)+c_{2} e^{\sqrt{3} t} \sin (t)+c_{3} \cos (2 t)+c_{4} \sin (2 t)+$ $c_{5} e^{-\sqrt{3} t} \cos (t)+c_{6} e^{-\sqrt{3} t} \sin (t)$.
(b) $y^{(3)}(t)+3 y^{(2)}(t)+2 y^{\prime}(t)=0$.

The characteristic equation of $y^{(3)}(t)+3 y^{(2)}(t)+2 y^{\prime}(t)=0$ is $r^{3}+3 r^{2}+2 r=$ $r\left(r^{2}+3 r+2\right)=r(r+1)(r+2)=0$. Its roots are $r=0, r=-1$ and $r=-2$. The general solution is $y(t)=c_{1}+c_{2} e^{-t}+c_{3} e^{-2 t}$.
(c) $y^{(4)}(t)-8 y^{(2)}(t)+16 y=0$.

The characteristic equation of $y^{(4)}(t)-8 y^{(2)}(t)+16 y=0$ is $r^{4}-8 r^{2}+16=$ $\left(r^{2}-4\right)^{2}=(r-2)^{2}(r+2)^{2}$. Its roots are $r=2$ with multiplicity 2 and $r=-2$ with multiplicity 2 . The general solution is $y(t)=c_{1} e^{2 t}+c_{2} t e^{2 t}+c_{3} e^{-2 t}+c_{4} t e^{-2 t}$. Note: Compare with the problems $y^{(4)}(t)+8 y^{(2)}(t)+16 y=0$. The characteristic equation of $y^{(4)}(t)+8 y^{(2)}(t)+16 y=0$ is $r^{4}+8 r^{2}+16=\left(r^{2}+4\right)^{2}=0$. Its roots are $r= \pm 2 i$ with multiplicity 2 . The general solution is $y(t)=c_{1} \cos (2 t)+$ $c_{2} \sin (2 t)+c_{3} t \cos (2 t)+c_{4} t \sin (2 t)$.
(d) $y^{(6)}(t)+2 y^{(3)}(t)+y(t)=0$.

The characteristic equation of $y^{(6)}(t)+2 y^{(3)}(t)+y(t)=0$ is $r^{6}+2 r^{3}+1=0$.
Note that $r^{6}+2 r^{3}+1=\left(r^{3}+1\right)^{2}$ and $-1=1 e^{i(\pi+2 k \pi)}$ where k is an integer.
Solving $r^{3}+1=0$ is the same as solving $r^{3}=-1=e^{i(\pi+2 k \pi)}$.
Therefore $r=e^{i \frac{(\pi+2 k \pi)}{3}}=e^{i \frac{(\pi+2 k \pi)}{3}}=\cos \left(\frac{(\pi+2 k \pi)}{3}\right)+i \sin \left(\frac{(\pi+2 k \pi)}{3}\right)$ where $k=0,1,2$. Let $r_{k}=\cos \left(\frac{(\pi+2 k \pi)}{3}+i \sin \left(\frac{(\pi+2 k \pi)}{3}\right)\right.$ where $k=0,1,2$.
Therefore $r_{0}=\cos \left(\frac{\pi}{3}\right)+i \sin \left(\frac{\pi}{3}\right)=\frac{1}{2}+\frac{\sqrt{3}}{2} i, r_{1}=(\cos (\pi)+i \sin (\pi)=-1$, $r_{2}=2\left(\cos \left(\frac{5 \pi}{3}\right)+i \sin \left(\frac{5 \pi}{3}\right)\right)=\frac{1}{2}-\frac{\sqrt{3}}{2} i$, Note that $r_{0}=\overline{r_{2}}$. Thus the root of $\left(r^{3}+1\right)^{2}$ is $\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$ with multiplicity 2 and $r_{1}=-1$ with multiplicity 2. The general solution is $y(t)=c_{1} e^{\frac{t}{2}} \cos \left(\frac{\sqrt{3}}{2} t\right)+c_{2} e^{\frac{t}{2}} \sin \left(\frac{\sqrt{3}}{2} t\right)+c_{3} t e^{\frac{t}{2}} \cos \left(\frac{\sqrt{3}}{2} t\right)+$ $c_{4} t e^{\frac{t}{2}} \sin \left(\frac{\sqrt{3}}{2} t\right)+c_{5} e^{-t}+c_{6} t e^{-t}$.
(e) $\left(D^{2}-4 D+13\right)^{2}(D-2)^{2} y(t)=0$.

The characteristic equation of $\left(D^{2}-4 D+13\right)^{2}(D-2)^{2} y(t)=0$ is $\left(r^{2}-4 r+\right.$ $13)^{2}(r-2)^{2}=0$. Its roots are $r=2 \pm 3 i$ with multiplicity 2 and $r=2$ with multiplicity 2 . The general solution is $y(t)=c_{1} e^{2 t} \cos (3 t)+c_{2} e^{2 t} \sin (3 t)+$ $c_{3} t e^{2 t} \cos (3 t)+c_{4} e^{2 t} \sin (3 t)+c_{5} e^{2 t}+c_{6} t e^{2 t}$.
(2) Use the method of Annihilators to find the form of particular solution of the following problems.
(a) $\left(D^{3}-2 D^{2}+D\right) y=t+\cos (t)+t \sin (t)+t^{2} e^{t}$.

Solving the characteristic equation $r^{3}-2 r^{2}+2 r=r\left(r^{2}-2 r+r\right)=r(r-1)^{2}=0$, we have $r=0,1,1$. The solutions of $\left(D^{3}-2 D^{2}+D\right) y=0$ are spanned by $1, e^{t}$ and $t e^{t}$.
Now we should find the annihilator of $t+\cos (t)+t \sin (t)+t^{2} e^{t}$. We have $D^{2}(t)=0,\left(D^{2}+1\right)^{2}(\cos (t)+t \sin (t))=0$ and $(D-1)^{3}\left(t^{2} e^{t}\right)=0$.
So $D^{2}\left(D^{2}+1\right)^{2}(D-1)^{3}\left(t+\cos (t)+t \sin (t)+t^{2} e^{t}\right)=0$.
The given equation is $\left(D^{3}-2 D^{2}+D\right) y=t+\cos (t)+t \sin (t)+t^{2} e^{t}$. Applying the annihilator $D^{2}\left(D^{2}+1\right)^{2}(D-1)^{3}$ to the equation above, we have

$$
\begin{gathered}
D^{2}\left(D^{2}+1\right)^{2}(D-1)^{3}\left(D^{3}-2 D^{2}+D\right) y \\
=D^{2}\left(D^{2}+1\right)^{2}(D-1)^{3}\left(t+\cos (t)+t \sin (t)+t^{2} e^{t}\right)=0 .
\end{gathered}
$$

Solving the characteristic equation
$r^{2}\left(r^{2}+1\right)^{2}(r-1)^{3}\left(r^{3}-2 r^{2}+r\right)$
$=r^{2}\left(r^{2}+1\right)^{2}(r-1)^{3} r(r-1)^{2}=r^{3}\left(r^{2}+1\right)^{2}(r-1)^{5}=0$, we have $r=0$ with multiplicity $3, \pm i$ with multiplicity 2 , and 1 with multiplicity 5 . The solution of $\left(D^{3}-2 D^{2}+D\right) y=t+\cos (t)+t \sin (t)+t^{2} e^{t}$ is spanned by $1, t, t^{2}, \cos (t)$, $\sin (t), t \cos (t), t \sin (t), e^{t}, t e^{t}, t^{2} e^{t}, t^{3} e^{t}$ and $t^{4} e^{t}$. Excluding those functions (1, e^{t} and $\left.t e^{t}\right)$ appeared as the solution of $\left(D^{3}+2 D^{2}+D\right) y=0$, we know that the particular solution is of the form
$y_{p}(t)=c_{1} t+c_{2} t^{2}+c_{3} \cos (t)+c_{4} \sin (t)+c_{5} t \cos (t)+c_{6} t \sin (t)+c_{7} t^{2} e^{t}+c_{8} t^{3} e^{t}+c_{9} t^{4} e^{t}$.
(b) $\left(D^{3}+D\right) y=t+\cos (t)+t \sin (t)+t^{2} e^{t}$.

Solving the characteristic equation $r^{3}+r=r\left(r^{2}+1\right)=0$, we have $r=0, \pm i$. The solutions of $\left(D^{3}+D\right) y=0$ are spanned by $1, \cos (t)$ and $\sin (t)$.
From previous question, we know that $D^{2}\left(D^{2}+1\right)^{2}(D-1)^{3}(t+\cos (t)+t \sin (t)+$ $\left.t^{2} e^{t}\right)=0$. So $D^{2}\left(D^{2}+1\right)^{2}(D-1)^{3}\left(D^{3}+D\right) y=0$. Solving the characteristic equation
$r^{2}\left(r^{2}+1\right)^{2}(r-1)^{3}\left(r^{3}+r\right)$
$=r^{2}\left(r^{2}+1\right)^{2}(r-1)^{3} r\left(r^{2}+1\right)=r^{3}\left(r^{2}+1\right)^{3}(r-1)^{3}=0$, we have $r=0$ with multiplicity $3, \pm i$ with multiplicity 3 , and 1 with multiplicity 3 . The solution
of $\left(D^{3}+D\right) y=t+\cos (t)+t \sin (t)+t^{2} e^{t}$ is spanned by $1, t, t^{2}, \cos (t), \sin (t)$, $t \cos (t), t \sin (t), t^{2} \cos (t), t^{2} \sin (t), e^{t}, t e^{t}$ and $t^{2} e^{t}$. Excluding those functions ($1, \cos (t)$ and $\sin (t))$ appeared as the solution of $\left(D^{3}+D\right) y=0$, we know that the particular solution is of the form $y_{p}(t)=c_{0} t+c_{1} t^{2}+c_{2} t \cos (t)+c_{3} t \sin (t)+$ $c_{4} t^{2} \cos (t)+c_{5} t^{2} \sin (t)+c_{6} e^{t}+c_{7} t e^{t}+c_{8} t^{2} e^{t}$.
(c) $y^{\prime \prime}(t)+2 y^{\prime}(t)+2 y(t)=3 t e^{-t} \cos (t)$.

Solving the characteristic equation $r^{2}+2 r+2=0$, we have $r=-1 \pm i$. The solutions of $\left(D^{2}+2 D+2\right) y=0$ are spanned by $e^{-t} \cos (t)$ and $e^{-t} \sin (t)$.
The annihilator of $t e^{-t} \cos (t)$ is $\left(D^{2}+2 D+2\right)^{2}$. We have $\left(D^{2}+2 D+2\right)^{2}\left(t e^{-t} \cos (t)\right)=$ 0 . From $\left(D^{2}+2 D+2\right)(y)=3 t e^{-t} \cos (t)$, we get $\left(D^{2}+2 D+2\right)^{2}\left(D^{2}+2 D+2\right)(y)=$ $\left(D^{2}+2 D+2\right)^{2}\left(3 t e^{-t} \cos (t)\right)=0$ and $\left(D^{2}+2 D+2\right)^{3}(y)=0$. Solving the characteristic equation $\left(r^{2}+2 r+2\right)^{3}=0$, we have $r=-1 \pm i$ with multiplicity 3. The solutions of $\left(D^{2}+2 D+2\right)^{3} y=0$ are spanned by $e^{-t} \cos (t), e^{-t} \sin (t)$, $t e^{-t} \cos (t), t e^{-t} \sin (t), t^{2} e^{-t} \cos (t)$ and $t^{2} e^{-t} \sin (t)$. Excluding those functions ($e^{-t} \cos (t)$ and $\left.e^{-t} \sin (t)\right)$ appeared as the solution of $\left(D^{2}+2 D+2\right) y=0$, we know that the particular solution is of the form $y_{p}(t)=c_{1} t e^{-t} \cos (t)+c_{2} t e^{-t} \sin (t)+$ $c_{3} t^{2} e^{-t} \cos (t)+c_{4} t^{2} e^{-t} \sin (t)$.
(3) Use Laplace's transform to find the solution of the following initial value problems.
(a) $y^{(3)}(t)-3 y^{(2)}(t)+2 y^{\prime}(t)=e^{4 t}$ with $y(0)=1, y^{\prime}(0)=0$ and $y^{\prime \prime}(0)=0$.

Taking the Laplace's transform of the equation, we have
$L\left(y^{(3)}(t)-3 y^{(2)}(t)+2 y^{\prime}(t)\right)=L\left(e^{4 t}\right)$
$\Rightarrow s^{3} L(y)-s^{2}-3 s^{2} L(y)+3 s+2 s L(y)-2=\frac{1}{s-4}$
$\Rightarrow\left(s^{3}-3 s^{2}+2 s\right) L(y)=s^{2}-3 s+2+\frac{1}{s-4}$
$\Rightarrow L(y)=\frac{s^{2}-3 s+2}{\left(s^{3}-3 s^{2}+2 s\right)}+\frac{1}{(s-4)\left(s^{3}-3 s^{2}+2 s\right)}$
$\Rightarrow L(y)=\frac{1}{s}+\frac{1}{(s-4)\left(s^{3}-3 s^{2}+2 s\right)}$
Using partial fraction, we have
$\frac{1}{(s-4)\left(s^{3}-3 s^{2}+2 s\right)}=\frac{1}{s(s-1)(s-2)(s-4)}=\frac{a}{s}+\frac{b}{(s-1)}+\frac{c}{(s-2)}+d \frac{c}{(s-4)}$.
Multiplying $s(s-1)(s-2)(s-4)$, we get
$1=a(s-1)(s-2)(s-4)+b s(s-2)(s-4)+c s(s-1)(s-4)+d s(s-1)(s-2)$.
Plugging $s=0$, we get $a=-\frac{1}{8}$. Plugging $s=1$, we get $b=\frac{1}{3}$. Plugging $s=2$, we get $c=-\frac{1}{4}$. Plugging $s=4$, we get $d=\frac{1}{24}$. So we have
$\frac{1}{(s-4)\left(s^{3}-3 s^{2}+2 s\right)}=-\frac{1}{8} \frac{1}{s}+\frac{1}{3} \frac{1}{(s-1)}-\frac{1}{4} \frac{1}{(s-2)}+\frac{1}{24} \frac{1}{(s-4)}$.
So we have $L(y)=\frac{1}{s}+\frac{1}{(s-4)\left(s^{3}-3 s^{2}+2 s\right)}$
$=\frac{1}{s}-\frac{1}{8} \frac{1}{s}+\frac{1}{3} \frac{1}{(s-1)}-\frac{1}{4} \frac{1}{(s-2)}+\frac{1}{24} \frac{1}{(s-4)}$
$=\frac{7}{8} \frac{1}{s}+\frac{1}{3} \frac{1}{(s-1)}-\frac{1}{4} \frac{1}{(s-2)}+\frac{1}{24} \frac{1}{(s-4)}$
and $y(t)=L^{-1}\left(\frac{7}{8} \frac{1}{s}+\frac{1}{3} \frac{1}{(s-1)}-\frac{1}{4} \frac{1}{(s-2)}+\frac{1}{24} \frac{1}{(s-4)}\right)=\frac{7}{8}+\frac{1}{3} e^{t}-\frac{1}{4} e^{2 t}+\frac{1}{24} e^{4 t}$
(b) $y^{\prime \prime}(t)+y(t)=\sin (2 t)$ with $y(0)=0, y^{\prime}(0)=0$.

Taking the Laplace's transform and using the conditions, we have
$L\left(y^{\prime \prime}(t)+y(t)\right)=L(\sin (2 t))$
$\Rightarrow\left(s^{2}+1\right) Y(s)=\frac{2}{s^{2}+4}$
$\Rightarrow Y(s)=\frac{2}{\left(s^{2}+4\right)\left(s^{2}+1\right)}$
Using partial fraction, we have $\frac{2}{\left(s^{2}+4\right)\left(s^{2}+1\right)}=\frac{a s+b}{s^{2}+1}+\frac{c s+d}{s^{2}+4}$. Multiplying $\left(s^{2}+\right.$ $4)\left(s^{2}+1\right)$, we get $2=(a s+b)\left(s^{2}+4\right)+(c s+d)\left(s^{2}+1\right)$ and
$2=a s^{3}+b s^{2}+4 a s+4 b+c s^{3}+d s^{2}+c s+d=(a+c) s^{3}+(b+d) s^{2}+(4 a+c) s+4 b+d$.
Comparing the coefficient, we get $a+c=0, b+d=0,4 a+c=0$ and $4 b+d=2$.
From $a+c=0$ and $4 a+c=0$, we get $a=0$ and $c=0$. From $b+d=0$ and
$4 b+d=2$, we get $b=\frac{2}{3}$ and $d=-\frac{2}{3}$. So $Y(s)=\frac{2}{\left(s^{2}+4\right)\left(s^{2}+1\right)}=\frac{2}{3} \frac{1}{s^{2}+1}-\frac{2}{3} \frac{1}{s^{2}+4}$.
Hence $y(t)=L^{-1}\left(\frac{2}{3} \frac{1}{s^{2}+1}-\frac{2}{3} \frac{1}{s^{2}+4}\right)=\frac{2}{3} \sin (t)-\frac{1}{3} \sin (2 t)$. Note that $L^{-1}\left(\frac{1}{s^{2}+a^{2}}\right)=$ $\frac{1}{a} \sin (a t)$.
(c) $y^{\prime \prime}(t)+4 y=g(t)$ with $y(0)=0$ and $y^{\prime}(0)=0$ where

$$
g(t)=\left\{\begin{array}{l}
0,0 \leq t<2 \\
3(t-2), 2 \leq t<4 \\
6,4 \leq t
\end{array}\right.
$$

We have $g(t)=3(t-2) u_{2,4}(t)+6 u_{4}(t)=3(t-2)\left(u_{2}(t)-u_{4}(t)\right)+6 u_{4}(t)=$ $3(t-2) u_{2}(t)-(3 t-12) u_{4}(t)=3(t-2) u_{2}(t)-3(t-4) u_{4}(t)$. Let $h(t-2)=t-2$ and $k(t-4)=t-4$. Then $h(t)=t$ and $k(t)=t$. So $g(t)=3 h(t-2) u_{2}(t)-$ $3 k(t-4) u_{4}(t)$ and $L(g(t))=L\left(3 h(t-2) u_{2}(t)-3 k(t-4) u_{4}(t)\right)=3 e^{-2 s} L(h(t))-$ $3 e^{-4 s} L(k(t))=3 \frac{e^{-2 s}}{s^{2}}-3 \frac{e^{-4 s}}{s^{2}}$.
$L\left(y^{\prime \prime}(t)+4 y(t)\right)=L(g(t))=3 \frac{e^{-2 s}}{s^{2}}-3 \frac{e^{-4 s}}{s^{2}}$
$\Rightarrow(s 2+4) Y(s)=3 \frac{e^{-2 s}}{s^{2}}-3 \frac{e^{-4 s}}{s^{2}}$
$\Rightarrow Y(s)=3 \frac{e^{-2 s}}{s^{2}\left(s^{2}+4\right)}-3 \frac{e^{-4 s}}{s^{2}\left(s^{2}+4\right)}$
$\Rightarrow Y(s)=3 \frac{e^{-2 s}}{s^{2}\left(s^{2}+4\right)}-3 \frac{e^{-4 s}}{s^{2}\left(s^{2}+4\right)}$
Using partial fraction, we have $\frac{1}{s^{2}\left(s^{2}+4\right)}=\frac{a}{s}+\frac{b}{s^{2}}+\frac{c s+d}{\left(s^{2}+4\right)}$. This implies that $1=a s\left(s^{2}+4\right)+b\left(s^{2}+4\right)+c s^{3}+d s^{2}=(a+c) s^{3}+(b+d) s^{2}+4 a s+4 b$.
Comparing the coefficient, we get $a+c=0, b+d=0,4 a=0$ and $4 b=1$. We get $a=0$ and $c=0, b=\frac{1}{4}$ and $d=-\frac{1}{4}$. So $\frac{1}{s^{2}\left(s^{2}+4\right)}=\frac{1}{4} \frac{1}{s^{2}}-\frac{1}{4} \frac{1}{\left(s^{2}+4\right)}$.
$Y(s)=3 \frac{e^{-2 s}}{s^{2}\left(s^{2}+4\right)}-3 \frac{e^{-4 s}}{s^{2}\left(s^{2}+4\right)}=\frac{3}{4} e^{-2 s}\left(\frac{1}{s^{2}}-\frac{1}{\left(s^{2}+4\right)}\right)-\frac{3}{4} e^{-4 s}\left(\frac{1}{s^{2}}-\frac{1}{\left(s^{2}+4\right)}\right)$.
Let $f(t)=L^{-1}\left(\frac{1}{s^{2}}-\frac{1}{\left(s^{2}+4\right)}\right)=t-\frac{1}{2} \sin (2 t)$. Hence $y(t)=L^{-1}\left(\frac{3}{4} e^{-2 s}\left(\frac{1}{s^{2}}-\frac{1}{\left(s^{2}+4\right)}\right)-\right.$ $\left.\frac{3}{4} e^{-4 s}\left(\frac{1}{s^{2}}-\frac{1}{\left(s^{2}+4\right)}\right)\right)=\frac{3}{4} u_{2}(t) f(t-2)-\frac{3}{4} u_{4}(t) f(t-4)$.
(d) $y^{\prime \prime}(t)+4 y^{\prime}(t)+4 y=g(t)$ with $y(0)=0$ and $y^{\prime}(0)=0$ where

$$
g(t)=\left\{\begin{array}{l}
0,0 \leq t<2 \\
3(t-2), 2 \leq t<4 \\
6,4 \leq t
\end{array}\right.
$$

From previous question, we have $L(g(t))=3 \frac{e^{-2 s}}{s^{2}}-3 \frac{e^{-4 s}}{s^{2}}$.

$$
\begin{aligned}
& L\left(y^{\prime \prime}(t)+4 y^{\prime}(t)+4 y(t)\right)=L(g(t))=3 \frac{e^{-2 s}}{s^{2}}-3 \frac{e^{-4 s}}{s^{2}} \\
& \Rightarrow(s 2+4 s+4) Y(s)=3 \frac{e^{-2 s}}{s^{2}}-3 \frac{e^{-4 s}}{s^{2}} \\
& \Rightarrow Y(s)=3 \frac{e^{-2 s}}{s^{2}\left(s^{2}+4 s+4\right)}-3 \frac{e^{-4 s}}{s^{2}\left(s^{2}+4 s+4\right)} \\
& \Rightarrow Y(s)=3 \frac{e^{-2 s}}{s^{2}(s+2)^{2}}-3 \frac{e^{-4 s}}{s^{2}(s+2)^{2}}
\end{aligned}
$$

Using partial fraction, we have $\frac{1}{s^{2}(s+2)^{2}}=\frac{a}{s}+\frac{b}{s^{2}}+\frac{c(s+2)+d}{(s+2)^{2}}$. This implies that $1=a s(s+2)^{2}+b(s+2)^{2}+c s^{2}(s+2)+d s^{2}$. Plugging in $s=0$, we get $b=\frac{1}{4}$. Plugging in $s=-2$, we get $d=\frac{1}{4}$. Hence $1=a s(s+2)^{2}+\frac{1}{4}(s+2)^{2}+$ $c s^{2}(s+2)+\frac{1}{4} s^{2}$. Plugging in $s=1$ and $s=-1$, we have $1=9 a+\frac{9}{4}+3 c+\frac{1}{4}$ and $1=-a+\frac{1}{4}+c+\frac{1}{4}$. This gives $9 a+3 c=-\frac{3}{2}$ and $-a+c=\frac{1}{2}$. Hence $a=-\frac{1}{4}$ and $c=\frac{1}{4}$. Now we have $\frac{1}{s^{2}(s+2)^{2}}=-\frac{1}{4} \frac{1}{s}+\frac{1}{4} \frac{1}{s^{2}}+\frac{1}{4} \frac{1}{(s+2)}+\frac{1}{4} \frac{1}{(s+2)^{2}}$. Let $f(t)=L^{-1}\left(-\frac{1}{4} \frac{1}{s}+\frac{1}{4} \frac{1}{s^{2}}+\frac{1}{4} \frac{1}{(s+2)}+\frac{1}{4} \frac{1}{(s+2)^{2}}\right)=-\frac{1}{4}+\frac{1}{4} t+\frac{1}{4} e^{-2 t}+\frac{1}{4} t e^{-2 t}$. Then $y(t)=L^{-1}\left(3 \frac{e^{-2 s}}{s^{2}(s+2)^{2}}-3 \frac{e^{-4 s}}{s^{2}(s+2)^{2}}\right)=3 u_{2}(t) f(t-2)-3 u_{4}(t) f(t-4)$.
(e) $y^{\prime \prime}(t)+4 y^{\prime}(t)+5 y=g(t)$ with $y(0)=0$ and $y^{\prime}(0)=0$ where

$$
g(t)=\left\{\begin{array}{l}
0,0 \leq t<2 \\
1,2 \leq t<4 \\
0,4 \leq t
\end{array}\right.
$$

We have $g(t)=u_{2,4}(t)=u_{2}(t)-u_{4}(t)$ and $L(g(t))=e^{-2 s}-e^{-4 s}$. Taking the Laplace transform, we get $L\left(y^{\prime \prime}(t)+5 y^{\prime}(t)+5 y\right)=L(g(t))$ and $\left(s^{2}+4 s+5\right) Y(s)=$ $e^{-2 s}-e^{-4 s}$.
$\Rightarrow Y(s)=\frac{e^{-2 s}}{\left(s^{2}+4 s+5\right)}-\frac{e^{-4 s}}{\left(s^{2}+4 s+5\right)}$.
Note that $\frac{1}{\left(s^{2}+4 s+5\right)}=\frac{1}{(s+2)^{2}+1}$ and $f(t)=L^{-1}\left(\frac{1}{(s+2)^{2}+1}\right)=e^{-2 t} \sin (t)$.
Then $y(t)=L^{-1}\left(\frac{e^{-2 s}}{\left(s^{2}+4 s+5\right)}-\frac{e^{-4 s}}{\left(s^{2}+4 s+5\right)}\right)=u_{2}(t) f(t-2)-u_{4}(t) f(t-4)$.
(f) $y^{\prime \prime}(t)+5 y^{\prime}(t)+4 y(t)=\delta(t-2)$, with $y(0)=0$ and $y^{\prime}(0)=0$.

Taking the Laplace transform $L\left(y^{\prime \prime}(t)+5 y^{\prime}(t)+4 y(t)\right)=L(\delta(t-2))$, we have $\left(s^{2}+5 s+4\right) Y(s)=e^{-2 s}$.
$\Rightarrow Y(s)=\frac{e^{-2 s}}{\left(s^{2}+5 s+4\right)}=\frac{e^{-2 s}}{((s+1)(s+4))}=e^{-2 s}\left(\frac{1}{3} \frac{1}{s+1}-\frac{1}{3} \frac{1}{s+4}\right)$
$=\frac{1}{3} \frac{e^{-2 s}}{s+1}-\frac{1}{3} \frac{e^{-2 s}}{s+4}$.
Let $f(t)=L^{-1}\left(\frac{1}{s+1}\right)=e^{-t}$ and $g(t)=L^{-1}\left(\frac{1}{s+4}\right)=e^{-4 t}$

We have $\left.y(t)=L^{-1}\left(\frac{1}{3} \frac{e^{-2 s}}{s+1}-\frac{1}{3} \frac{e^{-2 s}}{s+4}\right)=\frac{1}{3} u_{2}(t) f(t-2)-\frac{1}{3} u_{2}(t) g(t-2)=\frac{1}{3} u_{2}(t) e^{-(t-2)}\right)-$ $\frac{1}{3} u_{2}(t) e^{-4(t-2)}$.
(g) $y^{\prime \prime}(t)+4 y^{\prime}(t)+5 y(t)=\delta(t-2)$, with $y(0)=1$ and $y^{\prime}(0)=1$.

Taking the Laplace transform $L\left(y^{\prime \prime}(t)+4 y^{\prime}(t)+5 y(t)\right)=L(\delta(t-2))$, we have $\left(s^{2}+4 s+5\right) Y(s)-s-5=e^{-2 s}$.
$\Rightarrow Y(s)=\frac{e^{-2 s}(s+5)}{\left(s^{2}+4 s+5\right)}+\frac{e^{-2 s}}{\left(s^{2}+4 s+5\right)}=\frac{e^{-2 s}(s+5)}{(s+2)^{2}+1}+\frac{e^{-2 s}}{(s+2)^{2}+1}$
$=\frac{e^{-2 s}(s+2)}{(s+2)^{2}+1}+4 \frac{e^{-2 s}}{(s+2)^{2}+1}$.
Let $f(t)=L^{-1}\left(\frac{(s+2)}{(s+2)^{2}+1}\right)=e^{-2 t} \cos (t)$ and $g(t)=L^{-1}\left(\frac{1}{(s+2)^{2}+1}\right)=e^{-2 t} \sin (t)$
We have $y(t)=L^{-1}\left(\frac{e^{-2 s}(s+2)}{(s+2)^{2}+1}+4 \frac{e^{-2 s}}{(s+2)^{2}+1}\right)=u_{2}(t) f(t-2)+4 u_{2}(t) g(t-2)=$ $u_{2}(t) e^{-2(t-2)} \cos (t-2)+4 u_{2}(t) e^{-2(t-2)} \sin (t-2)$.
(h) $y^{\prime \prime}(t)-4 y^{\prime}(t)+4 y(t)=\delta(t-2)$, with $y(0)=0$ and $y^{\prime}(0)=0$.

Taking the Laplace transform $L\left(y^{\prime \prime}(t)+4 y^{\prime}(t)+4 y(t)\right)=L(\delta(t-2))$, we have $\left(s^{2}+4 s+4\right) Y(s)=e^{-2 s}$.
$\Rightarrow Y(s)=\frac{e^{-2 s}}{\left(s^{2}+4 s+4\right)}=\frac{e^{-2 s}}{(s+2)^{2}}$.
Let $f(t)=L^{-1}\left(\frac{1}{(s+2)^{2}}\right)=t e^{-2 t}$.
We have $y(t)=L^{-1}\left(\frac{e^{-2 s}}{(s+2)^{2}}\right)=u_{2}(t) f(t-2)=u_{2}(t)(t-2) e^{-2(t-2)}$.
(4) Express the solution of the given initial value problem in terms of the convolution integral.
(a) $y^{\prime \prime}(t)+4 y^{\prime}(t)+5 y(t)=e^{2 t} \cos (t)$, with $y(0)=0$ and $y^{\prime}(0)=0$.

Taking the Laplace transform of the equation, we have
$L\left(y^{\prime \prime}(t)+4 y^{\prime}(t)+5 y(t)\right)=L\left(e^{2 t} \cos (t)\right)$
$\Rightarrow\left(s^{2}+4 s+5\right) Y(s)=\frac{(s-2)}{(s-2)^{2}+1}$
$\Rightarrow Y(s)=\frac{(s-2)}{\left((s-2)^{2}+1\right)} \frac{1}{\left(s^{2}+4 s+5\right)}$. Let $f(t)=L^{-1}\left(\frac{(s-2)}{(s-2)^{2}+1}\right)=e^{2 t} \cos (t)$ and $g(t)=$
$L^{-1}\left(\frac{1}{s^{2}+4 s+5}\right)=L^{-1}\left(\frac{1}{(s+2)^{2}+1}\right)=e^{-2 t} \sin (t)$. So $y(t)=\int_{0}^{t} f(t-\tau) g(\tau) d \tau$.
(b) $y^{\prime \prime}(t)-2 y^{\prime}(t)+y(t)=t e^{t}$, with $y(0)=0$ and $y^{\prime}(0)=0$.

Taking the Laplace transform of the equation, we have
$L\left(y^{\prime \prime}(t)-2 y^{\prime}(t)+y(t)\right)=L\left(t e^{t}\right)$
$\Rightarrow\left(s^{2}-2 s+1\right) Y(s)=\frac{1}{(s-1)^{2}}$
$\Rightarrow Y(s)=\frac{1}{(s-1)^{2}} \frac{1}{\left(s^{2}-2 s+1\right)}=\frac{1}{(s-1)^{2}} \cdot \frac{1}{(s-1)^{2}}$. Let $f(t)=L^{-1}\left(\frac{1}{(s-1)^{2}}\right)=t e^{t}$
So $y(t)=\int_{0}^{t} f(t-\tau) f(\tau) d \tau$.
(c) $y^{\prime \prime}(t)-3 y^{\prime}(t)+2 y(t)=t e^{t}+t e^{2 t}$, with $y(0)=0$ and $y^{\prime}(0)=0$.

Taking the Laplace transform of the equation, we have

$$
\begin{aligned}
& L\left(y^{\prime \prime}(t)-3 y^{\prime}(t)+2 y(t)\right)=L\left(t e^{t}+t e^{2 t}\right) \\
& \Rightarrow\left(s^{2}-3 s+2\right) Y(s)=\frac{1}{(s-1)^{2}}+\frac{1}{(s-2)^{2}}
\end{aligned}
$$

$\Rightarrow Y(s)=\left(\frac{1}{(s-1)^{2}}+\frac{1}{(s-2)^{2}}\right) \frac{1}{\left(s^{2}-2 s+1\right)}=\left(\frac{1}{(s-1)^{2}}+\frac{1}{(s-2)^{2}}\right) \cdot \frac{1}{(s-1)^{2}}$. Let $f(t)=$ $L^{-1}\left(\frac{1}{(s-1)^{2}}+\frac{1}{(s-2)^{2}}\right)=t e^{t}+t e^{2 t}$ and $g(t)=L^{-1}\left(\frac{1}{(s-1)^{2}}\right)=t e^{t}$.
So $y(t)=\int_{0}^{t} f(t-\tau) g(\tau) d \tau$.

