Solutions to HW 11

(1) (Sec 6.4 Problem 1) (15 pts) $y^{\prime \prime}+y=f(t), y(0)=0, y^{\prime}(0)=1$

$$
f(t)=\left\{\begin{array}{l}
1, \quad 0 \leq t<\frac{\pi}{2} \\
0, \frac{\pi}{2} \leq t
\end{array}\right.
$$

We have $f(t)=u_{0}(t)-u_{1}(t)$ and $L(f(t))=\frac{1}{s}-\frac{e^{-s}}{s}$.
Since $L\left(y^{\prime \prime}+y\right)=L(f(t))=\frac{1}{s}-\frac{e^{-s}}{s}$ and $L\left(y^{\prime \prime}+y\right)=\left(s^{2}+1\right) Y(s)-s y(0)-y^{\prime}(0)=$ $\left(s^{2}+1\right) Y(s)-1$, we have $\left(s^{2}+1\right) Y(s)-1=\frac{1}{s}-\frac{e^{-s}}{s},\left(s^{2}+1\right) Y(s)=\frac{1}{s}-\frac{e^{-s}}{s}+1$ and $Y(s)=\frac{1}{s\left(s^{2}+1\right)}-\frac{e^{-s}}{s\left(s^{2}+1\right)}+\frac{1}{\left(s^{2}+1\right)}$. Using partial fraction, we have $\frac{1}{s\left(s^{2}+1\right)}=\frac{1}{s}-\frac{s}{\left(s^{2}+1\right)}$ and $g(t)=L^{-1}\left(\frac{1}{s\left(s^{2}+1\right)}\right)=1-\cos (t)$.

So $y(t)=1-\cos (t)+u_{\frac{\pi}{2}}(t) f\left(t-\frac{\pi}{2}\right)+\sin (t)=1-\cos (t)+u_{\frac{\pi}{2}}(t)\left(1-\cos \left(t-\frac{\pi}{2}\right)+\sin (t)=\right.$ $1-\cos (t)+u_{\frac{\pi}{2}}(t)(1-\sin (t))+\sin (t)$.

Note that we have used the fact that $\cos \left(t-\frac{\pi}{2}\right)=\sin (t)$.
(2) (Sec 6.4 Problem 5) (15 pts) $y^{\prime \prime}+3 y^{\prime}+2 y=f(t), y(0)=0, y^{\prime}(0)=0$

$$
f(t)=\left\{\begin{array}{l}
1, \quad 0 \leq t<10 \\
0,10 \leq t
\end{array}\right.
$$

We have $f(t)=u_{0}(t)-u_{10}(t)$ and $L(f(t))=\frac{1}{s}-\frac{e^{-10 s}}{s}$.
Since $L\left(y^{\prime \prime}+3 y^{\prime}+2 y\right)=L(f(t))=\frac{1}{s}-\frac{e^{-10 s}}{s}$ and $L\left(y^{\prime \prime}+3 y^{\prime}+2 y\right)=\left(s^{2}+\right.$ $3 s+2) Y(s)-s y(0)-y^{\prime}(0)+3 y(0)=\left(s^{2}+3 s+2\right) Y(s) Y(s)$, we have $\left(s^{2}+3 s+\right.$ 2) $Y(s)=\frac{1}{s}-\frac{e^{-10 s}}{s}$, and $Y(s)=\frac{1}{s\left(s^{2}+3 s+2\right)}-\frac{e^{-10 s}}{s\left(s^{2}+3 s+2\right)}$. Using partial fraction, we have $\frac{1}{s\left(s^{2}+3 s+2\right)}=\frac{1}{s(s+1)(s+2)}=\frac{a}{s}+\frac{b}{(s+1)}+\frac{c}{(s+2)}$ Multiplying $s(s+1)(s+2)$, we get $1=a(s+1)(s+2)+b s(s+2)+c s(s+1)$. Plugging in $s=0$, we have $1=2 a$ and $a=\frac{1}{2}$. Plugging in $s=-1$, we have $1=-b$ and $b=-1$. Plugging in $s=-2$, we have $1=-2 c$ and $c=-\frac{1}{2}$. So $\frac{1}{s\left(s^{2}+3 s+2\right)}=\frac{1}{2} \frac{1}{s}-\frac{1}{(s+1)}-\frac{1}{2} \frac{1}{(s+2)}$ and $g(t)=L^{-1}\left(\frac{1}{s\left(s^{2}+3 s+2\right)}\right)=L^{-1}\left(\frac{1}{2} \frac{1}{s}-\frac{1}{(s+1)}-\frac{1}{2} \frac{1}{(s+2)}\right)=\frac{1}{2}-e^{-t}-\frac{1}{2} e^{-2 t}$.

Hence $y(t)=L^{-1}\left(\frac{1}{s\left(s^{2}+3 s+2\right)}-\frac{e^{-10 s}}{s\left(s^{2}+3 s+2\right)}\right)=g(t)-u_{10}(t) g(t-10)$ $=\frac{1}{2}-e^{-t}-\frac{1}{2} e^{-2 t}-u_{10}(t)\left(\frac{1}{2}-e^{-(t-10)}-\frac{1}{2} e^{-2(t-10)}\right)$.
(3) (Sec 6.4 Problem 9)(20 pts) $y^{\prime \prime}+y=g(t), y(0)=0, y^{\prime}(0)=1$

$$
g(t)=\left\{\begin{array}{l}
\frac{t}{2}, \quad 0 \leq t<6 \\
3,6 \leq t
\end{array}\right.
$$

We have $g(t)=\frac{t}{2}\left(u_{0}(t)-u_{6}(t)\right)+3 u_{6}(t)=\frac{t}{2}+\left(2-\frac{t}{2}\right) u_{6}(t)$ and $L(g(t))=L\left(\frac{t}{2}\right)+$ $L\left(\left(2-\frac{t}{2}\right) u_{6}(t)\right)$. Let $f(t-6)=2-\frac{t}{2}$. We have $f(t)=-\frac{t}{2}$. $L\left(\left(2-\frac{t}{2}\right) u_{6}(t)\right)=L\left(f(t-6) u_{6}(t)\right)=e^{6 s} L(f(t))=-\frac{e^{6 s}}{2 s^{2}}$ and $L(g(t))=\frac{1}{2 s^{2}}-\frac{e^{6 s}}{2 s^{2}}$.

Taking the Laplace's transform of the equation, we have $L\left(y^{\prime \prime}+y\right)=L(g(t))=$ $\frac{1}{2 s^{2}}-\frac{e^{6 s}}{2 s^{2}}$. Since $L\left(y^{\prime \prime}+y\right)=\left(s^{2}+1\right) Y(s)-s y(0)-y^{\prime}(0)=\left(s^{2}+1\right) Y(s)-1$, we have $\left(s^{2}+1\right) Y(s)-1=\frac{1}{2 s^{2}}-\frac{e^{6 s}}{2 s^{2}}, Y(s)=\frac{1}{s^{2}+1}+\frac{1}{2 s^{2}\left(s^{2}+1\right)}-\frac{e^{6 s}}{2 s^{2}\left(s^{2}+1\right)}$ and $y(t)=$ $L^{-1}\left(\frac{1}{s^{2}+1}+\frac{1}{2 s^{2}\left(s^{2}+1\right)}-\frac{e^{6 s}}{2 s^{2}\left(s^{2}+1\right)}\right)$. Using partial fraction, we have $\frac{1}{s^{2}\left(s^{2}+1\right)}=\frac{1}{s^{2}}-\frac{1}{s^{2}+1}$ and $f(t)=L^{-1}\left(\frac{1}{s^{2}\left(s^{2}+1\right)}\right)=L^{-1}\left(\frac{1}{s^{2}}\right)-L^{-1}\left(\frac{1}{s^{2}+1}\right)=t-\sin (t)$.

So $y(t)=L^{-1}\left(\frac{1}{s^{2}+1}\right)+L^{-1}\left(\frac{1}{2 s^{2}\left(s^{2}+1\right)}\right)-L^{-1}\left(\frac{e^{6 s}}{2 s^{2}\left(s^{2}+1\right)}\right)$
$=\sin (t)+\frac{1}{2}(t-\sin (t))-\frac{1}{2} f(t-6) u_{6}(t)=\frac{1}{2}(t+\sin (t))-\frac{1}{2}(t-6-\sin (t-6)) u_{6}(t)$.
(4) (Sec 6.5 Problem 2) (15 pts) $y^{\prime \prime}(t)+4 y(t)=\delta(t-\pi)-\delta(t-2 \pi)$, with $y(0)=0$ and $y^{\prime}(0)=0$.

Taking the Laplace transform $L\left(y^{\prime \prime}(t)+4 y(t)\right)=L(\delta(t-\pi)-\delta(t-2 \pi))$, we have $\left(s^{2}+4\right) Y(s)=e^{-\pi s}-e^{-2 \pi s}$. $\Rightarrow Y(s)=\frac{e^{-\pi s}}{\left(s^{2}+4\right)}+\frac{e^{-2 \pi s}}{\left(s^{2}+4\right)}$.

Let $f(t)=L^{-1}\left(\frac{1}{s^{2}+4}\right)=\frac{\sin (2 t)}{2}$.
We have $y(t)=L^{-1}\left(\frac{e^{-\pi s}}{\left(s^{2}+4\right)}\right)+L^{-1}\left(\frac{e^{-2 \pi s}}{\left(s^{2}+4\right)}\right)=u_{\pi}(t) f(t-\pi)+u_{2 \pi}(t) f(t-2 \pi)=$ $u_{\pi}(t) \frac{\sin (2(t-\pi))}{2}+u_{2 \pi}(t) \frac{\sin (2(t-\pi))}{2}=\frac{u_{\pi}(t) \sin (2 t)}{2}-\frac{u_{2 \pi}(t) \sin (2 t)}{2}$
(5) (Sec 6.5 Problem 3) (15 pts) $y^{\prime \prime}(t)+3 y^{\prime}(t)+2 y(t)=\delta(t-5)+u_{10}(t)$, with $y(0)=0$ and $y^{\prime}(0)=\frac{1}{2}$.

Taking the Laplace transform $L\left(y^{\prime \prime}(t)+3 y^{\prime}(t)+2 y(t)\right)=L(\delta(t-5))+L\left(u_{10}(t)\right)$, we have $\left(s^{2}+3 s+2\right) Y(s)-y^{\prime}(0)=e^{-5 s}+\frac{e^{-10 s}}{s}$ and $Y(s)=\frac{1}{2\left(s^{2}+3 s+2\right)}+\frac{e^{-5 s}}{\left(s^{2}+3 s+2\right)}+\frac{e^{-10 s}}{s\left(s^{2}+3 s+2\right)}$.

We have $\frac{1}{2\left(s^{2}+3 s+2\right)}=\frac{a}{s+1}+\frac{b}{s+2}, \frac{1}{2}=a(s+2)+b(s+1)$. Plugging $s=-1$, we have $a=\frac{1}{2}$. Plugging $s=-2$, we have $b=-\frac{1}{2}$. So $\frac{1}{2\left(s^{2}+3 s+2\right)}=\frac{1}{2} \frac{1}{s+1}-\frac{1}{2} \frac{1}{s+2}$ and $L^{-1}\left(\frac{1}{2\left(s^{2}+3 s+2\right)}\right)=\frac{1}{2} e^{-t}-\frac{1}{2} e^{-2 t}$.

By partial fraction, we have $\frac{1}{\left(s^{2}+3 s+2\right)}=\frac{a}{s+1}+\frac{b}{s+2}, 1=a(s+2)+b(s+1)$. Plugging $s=-1$, we have $a=1$. Plugging $s=-2$, we have $b=-1$. So $\frac{1}{\left(s^{2}+3 s+2\right)}=\frac{1}{s+1}-\frac{1}{s+2}$ and $\left.f(t)=L^{(} \frac{1}{\left(s^{2}+3 s+2\right)}\right)=e^{-t}-e^{-2 t}$.

By partial fraction, we have $\frac{1}{s\left(s^{2}+3 s+2\right)}=\frac{a}{s}+\frac{b}{s+1}+\frac{c}{s+2}, 1=a(s+1)(s+2)+$ $b s(s+2)+c s(s+1)$. Plugging $s=0$, we have $a=\frac{1}{2}$. Plugging $s=-1$, we have $b=-1$. Plugging $s=-2$, we have $c=\frac{1}{2}$. So $\frac{1}{s\left(s^{2}+3 s+2\right)}=\frac{1}{2} \frac{1}{s}-\frac{1}{s+1}-\frac{1}{2} \frac{1}{s+2}$ and $g(t)=L\left(\frac{1}{s\left(s^{2}+3 s+2\right)}\right)=\frac{1}{2}-e^{-t}+\frac{1}{2} e^{-2 t}$.

Now $y(t)=L^{-1}\left(\frac{1}{2\left(s^{2}+3 s+2\right)}+\frac{e^{-5 s}}{\left(s^{2}+3 s+2\right)}+\frac{e^{-10 s}}{s\left(s^{2}+3 s+2\right)}\right)$
$=\frac{1}{2} e^{-t}-\frac{1}{2} e^{-2 t}+u_{5}(t) f(t-5)+u_{10}(t) g(t-10)$
$=\frac{1}{2} e^{-t}-\frac{1}{2} e^{-2 t}+u_{5}(t)\left(=e^{-(t-5)}-e^{-2(t-5)}\right)+u_{10}(t)\left(\frac{1}{2}-e^{-(t-10)}+\frac{1}{2} e^{-2(t-10)}\right)$.
(6) (Sec 6.5 Problem 11) (20 pts) $y^{\prime \prime}(t)+2 y^{\prime}(t)+2 y(t)=\cos (t)+\delta\left(t-\frac{\pi}{2}\right)$, with $y(0)=0$ and $y^{\prime}(0)=0$.

Taking the Laplace transform $L\left(y^{\prime \prime}(t)+2 y^{\prime}(t)+2 y(t)\right)=L(\cos (t))+L\left(\delta\left(t-\frac{\pi}{2}\right)\right)$, we have $\left(s^{2}+2 s+2\right) Y(s)=\frac{s}{s^{2}+1}+e^{-\frac{\pi}{2} s}$.
$\Rightarrow Y(s)=\frac{s}{\left(s^{2}+2 s+2\right)\left(s^{2}+1\right)}+\frac{e^{-\frac{\pi}{2} s}}{\left(s^{2}+2 s+2\right)}$
Let $f(t)=L^{-1}\left(\frac{1}{s^{2}+2 s+2}\right)=L^{-1}\left(\frac{1}{(s+1)^{2}+1}\right)=e^{-t} \sin (t)$.
By partial fraction, we have $\frac{s}{\left(s^{2}+2 s+2\right)\left(s^{2}+1\right)}=\frac{a s+b}{s^{2}+1}+\frac{c(s+1)+d}{(s+1)^{2}+1}$.
Multiplying $\left(s^{2}+2 s+2\right)\left(s^{2}+1\right)$, we have $s=(a s+b)\left(s^{2}+2 s+2\right)+(c s+c+d)\left(s^{2}+1\right)=$ $(a+c) s^{3}+(2 a+b+c+d) s^{2}+(2 b+2 a+c) s+2 b+d+c$. Comparing the coefficients, we have $a+c=0,2 a+b+c+d=0,2 b+2 a+c=1$ and $2 b+d+c=0$. Using $a=-c$, we have $-c+b+d=0,2 b-c=1$ and $2 b+d+c=0$. From $2 b-c=1$, we have $c=2 b-1,-2 b+1+b+d=0$ and $2 b+d+2 b-1=0$. Solving $-b+d+1=0$ and $4 b+d-1=0$, we have $d=-\frac{3}{5}$ and $b=\frac{2}{5}, c=2 b-1=-\frac{1}{5}, a=-c=\frac{1}{5}$.
Hence $\frac{s}{\left(s^{2}+2 s+2\right)\left(s^{2}+1\right)}=\frac{\frac{1}{5} s+\frac{2}{5}}{s^{2}+1}+\frac{-\frac{1}{5}(s+1)-\frac{3}{5}}{(s+1)^{2}+1}$.
Recall that $Y(s)=\frac{s}{\left(s^{2}+2 s+2\right)\left(s^{2}+1\right)}+\frac{e^{-\frac{\pi}{2} s}}{\left(s^{2}+2 s+2\right)}$.
We have $y(t)=L^{-1}\left(\frac{\frac{1}{5} s+\frac{2}{5}}{s^{2}+1}+\frac{-\frac{1}{5}(s+1)-\frac{3}{5}}{(s+1)^{2}+1}\right)+L^{-1}\left(\frac{e^{-\frac{\pi}{2} s}}{\left(s^{2}+2 s+2\right)}\right)=\frac{1}{5} \cos (t)+\frac{2}{5} \sin (t)-$ $\frac{1}{5} e^{-t} \cos (t)-\frac{3}{5} e^{-t} \sin (t)+u_{\frac{\pi}{2}}(t) f\left(t-\frac{\pi}{2}\right)$
$=\frac{1}{5} \cos (t)+\frac{2}{5} \sin (t)-\frac{1}{5} e^{-t} \cos (t)-\frac{3}{5} e^{-t} \sin (t)+u_{\frac{\pi}{2}}(t) e^{-\left(t-\frac{\pi}{2}\right)} \sin \left(t-\frac{\pi}{2}\right)$.

