MATH 3860 Solution to HW 1

1. (Solution to extra problem 1) The solution of y'(t) = y(1-y) with y(0) = y(1-y) y_0 behaves in the following way.

(i) If $y_0 > 1$ then $\lim_{t\to\infty} y(t) = 1$. (ii) If $y_0 = 1$ then y(t) = 1. (iii) If $0 < y_0 < 1$ then $\lim_{t\to\infty} y(t) = 1$. (vi) If $y_0 = 0$ then y(t) = 0. (v) If $y_0 < 0$ then $\lim_{t\to\infty} y(t) = -\infty$.

2. Draw the directional field for the differential equation y'(t) = y(y-2)at the following points (0, 1), (1,1), (2,1), (1, 2), (2,2), (3,2) on the t-y plane.

Solution: Please see figure 1.

3. Draw the directional field for the differential equation y'(t)=(t+1)(y-2)at the following points (0, 1), (1,1), (2,1), (1, 2), (2,2), (3,2) on the t-y plane.

Solution: Please see figure 2.

- **4.** (Problem 5 from sec1.3) $\frac{d^2y}{dt^2} + \sin(t+y) = \sin(t)$ is a second order O.D.E. **5.** (Problem 6 from sec1.3) $\frac{d^3y}{dt^3} + t\frac{dy}{dt} + \cos^2(t)y = t^3$ is a third order O.D.E. **6.** (Problem 9 from sec1.3) $ty'(t) y = t^2$ is a first order O.D.E.

- 7. (Problem 12 from sec1.3) $t^2y''(t) + 5ty' + 4y = 0$ is a second order O.D.E.