MATH 3860 Solution to HW 1

1. (Solution to extra problem 1) The solution of $y^{\prime}(t)=y(1-y)$ with $y(0)=$ y_{0} behaves in the following way.
(i) If $y_{0}>1$ then $\lim _{t \rightarrow \infty} y(t)=1$.
(ii) If $y_{0}=1$ then $y(t)=1$.
(iii) If $0<y_{0}<1$ then $\lim _{t \rightarrow \infty} y(t)=1$.
(vi) If $y_{0}=0$ then $y(t)=0$.
(v) If $y_{0}<0$ then $\lim _{t \rightarrow \infty} y(t)=-\infty$.
2. Draw the directional field for the differential equation $y^{\prime}(t)=y(y-2)$ at the following points $(0,1),(1,1),(2,1),(1,2),(2,2),(3,2)$ on the $t-y$ plane.

Solution: Please see figure 1.
3. Draw the directional field for the differential equation $y^{\prime}(t)=(t+1)(y-2)$ at the following points $(0,1),(1,1),(2,1),(1,2),(2,2),(3,2)$ on the $t-y$ plane.

Solution: Please see figure 2.
4. (Problem 5 from $\sec 1.3$) $\frac{d^{2} y}{d t^{2}}+\sin (t+y)=\sin (t)$ is a second order O.D.E.
5. (Problem 6 from $\sec 1.3) \frac{d^{3} y}{d t^{3}}+t \frac{d y}{d t}+\cos ^{2}(t) y=t^{3}$ is a third order O.D.E.
6. (Problem 9 from secl.3) $t y^{\prime}(t)-y=t^{2}$ is a first order O.D.E.
7. (Problem 12 from $\sec 1.3) t^{2} y^{\prime \prime}(t)+5 t y^{\prime}+4 y=0$ is a second order O.D.E.

