MATH 3860 Solution to HW 3

1. (15 pts) (Problem 1 from sec 2.4) We can rewrite $(t-3) y^{\prime}+\ln (t) y=2 t$ as $y^{\prime}+\frac{\ln (t)}{t-3} y=\frac{2 t}{(t-3)}$. We know that $p(t)=\frac{\ln (t)}{t-3}$ is continuous for $t \in$ $(0,3) \cup(3, \infty)$ and $g(t)=\frac{2 t}{(t-3)}$ is continuous for $t \in(-\infty, 0) \cup(0,3) \cup(3, \infty)$. So $\frac{\ln (t)}{t-3}$ and $\frac{2 t}{(t-3)}$ are continuous for $t \in(0,3) \cup(3, \infty)$. The initial value is $y(1)=2$ and $1 \in(0,3)$. The solution exists if $t \in(0,3)$.
2. (15 pts) (Problem 4 from sec 2.4) We can rewrite $\left(4-t^{2}\right) y^{\prime}+2 t y=3 t^{2}$ as $y^{\prime}+\frac{2 t}{4-t^{2}} y=\frac{3 t^{2}}{\left(4-t^{2}\right)}$. We know that $p(t)=\frac{2 t}{4-t^{2}}=\frac{2 t}{(2-t)(2+t)}$ is continuous if $t \in(-\infty,-2) \cup(-2,2) \cup(2, \infty)$ and $g(t)=\frac{3 t^{2}}{\left(4-t^{2}\right)}$ is continuous for $t(-\infty,-2) \cup(-2,2) \cup(2, \infty)$. So both $\frac{2 t}{4-t^{2}}$ and $(-\infty,-2) \cup(-2,2) \cup(2, \infty)$ are continuous for $t \in(-\infty,-2) \cup(-2,2) \cup(2, \infty)$. The initial value is $y(-3)=2$ and $-3 \in(-\infty,-2)$. The solution of this problem exists if $t \in(-\infty,-2)$.
3. (15 pts) (Problem 5 from sec 2.4) The initial value is $y(1)=-3$ and $1 \in(-2,2)$. The solution of this problem exists if $t \in(-2,2)$.
4. (15 pts) (Problem 7 from sec 2.4) $y^{\prime}(t)=\frac{t-y}{2 t+5 y}$.

Let $f(t, y)=\frac{t-y}{2 t+5 y}$. Then $\frac{\partial f}{\partial y}=\frac{-(2 t+5 y)-(t-y) \cdot 5}{(2 t+5 y)^{2}}$. So both $f(t, y)$ and $\frac{\partial f}{\partial y}$ are continuous in the region $\{(t, y) \mid 2 t+5 y \neq 0\}$.
5. (15 pts) (Problem 8 from sec 2.4$) y^{\prime}(t)=\left(1-t^{2}-y^{2}\right)^{\frac{1}{2}}$.

Let $f(t, y)=\left(1-t^{2}-y^{2}\right)^{\frac{1}{2}}$. Then $\frac{\partial f}{\partial y}=\frac{-y}{\left(1-t^{2}-y^{2}\right)^{\frac{1}{2}}}$. So both $f(t, y)$ and $\frac{\partial f}{\partial y}$ are continuous in the region $\left\{(t, y) \mid 1-t^{2}-y^{2}>0\right\}$.
6. (25 pts)(Problem 28 from sec 2.4) Rewrite the equation $t^{2} y^{\prime}+2 t y-y^{3}=0$ as $y^{\prime}+\frac{2}{t} y-\frac{y^{3}}{t^{2}}=0$.
Let $v=y^{-2}$. Then $\frac{d v}{d t}=-2 y^{-3} \frac{d y}{d t}=-2 y^{-3}\left(-\frac{2}{t} y+\frac{y^{3}}{t^{2}}\right)=\frac{4}{t} y^{-2}+\frac{2}{t^{2}}=\frac{4}{t} v+\frac{2}{t^{2}}$.
So $\frac{d v}{d t}-\frac{4}{t} v=\frac{2}{t^{2}}$. The integrating factor is $\mu(t)=e^{\int-\frac{4}{t} d t}=e^{-4 \ln t}=t^{-4}$.
The solution of $\frac{d v}{d t}-\frac{4}{t} v=\frac{2}{t^{2}}$ is $v(t)=\frac{\int \mu(t) \frac{2}{t^{2}}}{\mu(t)}=\frac{\int t^{-4} \cdot \frac{2}{t^{2}} d t}{t^{-4}}=\frac{\int 2 t^{-6} d t}{t^{-4}}=\frac{\frac{2 t^{-5}}{-5}+C}{t^{-4}}=$ $-\frac{2 t^{-1}}{5}+C t^{4}$.

Recall that $v=y^{-2}$. We have $y^{2}=\frac{1}{v}$ and $y= \pm \sqrt{\frac{1}{v}}= \pm \sqrt{\frac{1}{-\frac{2 t^{-1}}{5}+C t^{4}}}$.

