MATH 3860 Solution to HW 4

1. (20 pts) (Problem 9 from sec 2.5) Let $f(y)=y^{2}\left(y^{2}-1\right)$. So $f(y)=0$ if $y=0$ or $y= \pm 1$. We have $f(-2)=(-2)^{2}\left((-2)^{2}-1\right)>0, f(-0.5)=$ $(-0.5)^{2}\left((-0.5)^{2}-1\right)<0, f(0.5)=(0.5)^{2}\left((0.5)^{2}-1\right)<0$ and $f(2)=(2)^{2}\left((2)^{2}-\right.$ 1) >0

The equilibrium points are $y=0, y=1$ and $y=-1$.
We also have $f(y)>0$ when $y \in(-\infty,-1) \cup(1, \infty)$ and $f(y)<0$ when $y \in(-1,0) \cup(0,1))$. Therefore -1 is a asymptotically stable equilibrium points, 1 is an unstable equilibrium point and 0 is a semistable equilibrium point.
2. (20 pts) (Problem 10 from sec 2.5) Let $f(y)=y\left(1-y^{2}\right)$. So $f(y)=0$ if $y=0$ or $y= \pm 1$. We have $f(-2)=(-2)\left(1-(-2)^{2}\right)>0, f(-0.5)=(-0.5)(1-$ $\left.(-0.5)^{2}\right)<0, f(0.5)=(0.5)\left(1-(0.5)^{2}\right)>0$ and $f(2)=(2)\left(1-(2)^{2}\right)<0$

The equilibrium points are $y=0, y=1$ and $y=-1$.
We also have $f(y)>0$ when $y \in(-\infty,-1) \cup(0,1)$ and $f(y)<0$ when $y \in(-1,0) \cup(1, \infty))$. Therefore -1 and 1 are asymptotically stable equilibrium points and 0 is an unstable equilibrium point.
3. (20 pts) (Problem 21 from sec 2.5)
(a) Let $f(y)=r\left(1-\frac{y}{K}\right) y-h=-\frac{r}{K} y^{2}+r y-h$. So $f(y)=0$ if $y=\frac{-r \pm \sqrt{r^{2}-4 \frac{r h}{K}}}{-2 \frac{\frac{r}{K}}{K}}=\frac{K}{2} \pm \frac{K \sqrt{1-4 \frac{h}{r K}}}{2}$. If $1-4 \frac{h}{r K}>0$ then the given eq has two equilibrium points $y_{1}=\frac{K}{2}-\frac{K \sqrt{1-4 \frac{h}{r K}}}{2}$ and $y_{2}=\frac{K}{2}+\frac{K \sqrt{1-4 \frac{h}{r K}}}{2}$.
(b) We know that $f(y)<0$ if $y \in\left(\infty, y_{1}\right) \cup\left(y_{2}, \infty\right)$ and $f(y)>0$ if $y \in\left(y_{1}, y_{2}\right)$. So y_{1} is unstable and y_{2} is asymptotically stable.
(c)From the sign graph of $f(y)$, we know that if $y(0)=y_{0}<y_{1}$ then $y(t)$ is decreasing to $-\infty$ and $y(t)$ decreases to 0 in finite time, if $y_{1}<$ $y(0)=y_{0}<y_{2}$ then $y(t)$ is increasing to y_{2} and $y(0)=y_{0}>y_{2}$ then $y(t)$ is decreasing to y_{2}.
(d) If $h>1-\frac{r K}{4}$ then $f(y)$ has no real root, then $f(y)<0$ for all y. So $y^{\prime}(t)=f(y)<0$ and $y(t)$ is decreasing to 0 as t increases.
(e) If $h=1-\frac{r K}{4}$ then $f(y)$ has repeated roots $y=\frac{K}{2}$. The equilibrium point is semistable.

We also have $f(y)>0$ when $y \in(-\infty,-1) \cup(0,1)$ and $f(y)<0$ when $y \in(-1,0) \cup(1, \infty))$. Therefore -1 and 1 are asymptotically stable equilibrium points and 0 is an unstable equilibrium point.
4. (20 pts) (Problem 3 from sec 2.6) $3 x^{2}-2 x y+2+\left(6 y^{2}-x^{2}+3\right) \frac{d y}{d x}=0$

Let $M=3 x^{2}-2 x y+2$ and $N=6 y^{2}-x^{2}+3$. Note that $M_{y}=-2 x$ and $N_{x}=-2 x$. Now $M_{y}=N_{x}$. This equation is exact. Solving $F_{x}=$ $3 x^{2}-2 x y+2$, we have $F=\int\left(3 x^{2}-2 x y+2\right) d x=x^{3}-x^{2} y+g(y)$. Using $F_{y}=N=6 y^{2}-x^{2}+3$, we get
$\left(x^{3}-x^{2} y+g(y)\right)_{y}=6 y^{2}-x^{2}+3$ and $-x^{2}+g^{\prime}(y)=6 y^{2}-x^{2}+3$. So $g^{\prime}(y)=6 y^{2}+3$ and $g(y)=\int 6 y^{2}+3 d y=2 y^{3}+3 y+c$. Hence $F(x, y)=x^{3}-x^{2} y+2 y^{3}+3 y$ and the solution satisfies $F(x, y)=x^{3}-x^{2} y+2 y^{3}+3 y=C$.
5. (20 pts) (Problem 10 from sec 2.6) $\frac{y}{x}+6 x+(\ln (x)-2) \frac{d y}{d x}=0$

Let $M=\frac{y}{x}+6 x$ and $N=\ln (x)-2$. Note that $M_{y}=\frac{1}{x}$ and $N_{x}=\frac{1}{x}$. Now $M_{y}=\stackrel{x}{N}$. This equation is exact. Solving $F_{x}=\frac{y^{x}}{x}+6 x$, we have $F=\int\left(\frac{y}{x}+6 x\right) d x=y \ln (x)+3 x^{2}+g(y)$. Using $F_{y}=N=\ln (x)-2$, we get $\left(y \ln (x)+3 x^{2}+g(y)\right)_{y}=\ln (x)-2$ and $\ln (x)+g^{\prime}(y)=\ln (x)-2$. So $g^{\prime}(y)=-2$

MATH 3860: page 3 of 2
and $g(y)=2 y+c$. Hence $F(x, y)=y \ln (x)+3 x^{2}+2 y$ and the solution satisfies $F(x, y)=y \ln (x)+3 x^{2}+2 y=C$.

