MATH 3860 Solution to HW 5

1. (15 pts) (Problem 4 from sec 3.1) $2 y^{\prime \prime}(t)-3 y^{\prime}(t)+y=0$. The characteristic equation of $2 y^{\prime \prime}(t)-3 y^{\prime}(t)+y=0$ is $2 r^{2}-3 r+1=(2 r-1)(r-1)=0$. We have $r=\frac{1}{2}$ or $r=1$. Thus the general solution is $y(t)=c_{1} e^{\frac{1}{2} t}+c_{2} e^{t}$.
2. (15 pts) (Problem 10 from sec 3.1) The characteristic equation of $y^{\prime \prime}(t)+4 y^{\prime}(t)+3 y(t)=0$ is $r^{2}+4 r+3=(r+1)(r+3)=0$. We have $r=-1$ or $r=-3$. Thus the general solution is $y(t)=c_{1} e^{-t}+c_{2} e^{-3 t}$.

Computing $y^{\prime}(t)$, we get $y^{\prime}(t)=-c_{1} e^{-t}-3 c_{2} e^{-3 t}$
Using $y(0)=2$ and $y^{\prime}(0)=-1$, we have
$c_{1} e^{0}+c_{2} e^{0}=2$ and $-c_{1} e^{0}-3 c_{2} e^{0}=-1$, i.e $c_{1}+c_{2}=2$ and $-c_{1}-3 c_{2}=-1$. We have $c_{1}=\frac{5}{2}$ and $c_{2}=-\frac{1}{2}$. So $y(t)=\frac{5}{2} e^{-t}-\frac{1}{2} e^{-3 t}$.
3. (15 pts) (Problem 21 from sec 3.1) The characteristic equation of $y^{\prime \prime}(t)-y^{\prime}(t)-2 y(t)=0$ is $r^{2}-r-2=(r+1)(r-2)=0$. We have $r=-1$ or $r=2$. Thus the general solution is $y(t)=c_{1} e^{-t}+c_{2} e^{2 t}$.

Computing $y^{\prime}(t)$, we get $y^{\prime}(t)=-c_{1} e^{-t}+2 c_{2} e^{2 t}$
Using $y(0)=\alpha$ and $y^{\prime}(0)=2$, we have
$c_{1} e^{0}+c_{2} e^{0}=\alpha$ and $-c_{1} e^{0}+2 c_{2} e^{0}=2$, i.e $c_{1}+c_{2}=\alpha$ and $-c_{1}+2 c_{2}=2$. We have $c_{1}=\frac{2 \alpha-2}{3}$ and $c_{2}=\frac{\alpha+2}{3}$. So $y(t)=\frac{2 \alpha-2}{3} e^{-t}+\frac{\alpha+2}{3} e^{2 t}$. Since $\lim _{t \rightarrow \infty} e^{-t}=0$ and $\lim _{t \rightarrow \infty} e^{2 t}=\infty$, the solution $y(t)=\frac{2 \alpha-2}{3} e^{-t}+\frac{\alpha+2}{3} e^{2 t}$ approaches 0 only if $\frac{\alpha+2}{3}=0$, i.e $\alpha=-2$.
4. (15 pts) (Problem 24 from sec 3.1) The characteristic equation of $y^{\prime \prime}(t)+(3-\alpha) y^{\prime}(t)-2(\alpha-1) y(t)=0$ is $r^{2}+(3-\alpha) r-2(\alpha-1)=(r-\alpha+$ 1) $(r+2)=0$. We have $r=\alpha-1$ or $r=-2$. Thus the general solution is $y(t)=c_{1} e^{(\alpha-1) t}+c_{2} e^{-2 t}$. If $\alpha<1$, then $\lim _{t \rightarrow \infty} y(t)=0$.

Since $\lim _{t \rightarrow \infty} e^{-2 t}=0$, there is no α such that $y(t)$ is unbounded.
5. (15 pts) (Problem 9 from Sec 3.2) Rewrite the equation $t(t-4) y^{\prime \prime}(t)+$ $3 t y^{\prime}(t)+4 y(t)=2$ as $y^{\prime \prime}+\frac{3}{t-4} y^{\prime}+\frac{4}{t(t-4)} y=\frac{2}{t(t-4)}$. So $p(t)=\frac{3}{t-4}, q(t)=\frac{4}{t(t-4)}$ and $g(t)=\frac{2}{t(t-4)}$. Hence $p(t)$ is continuous if $t \in(-\infty, 4) \cup(4, \infty), q(t)$ is continuous if $t \in(-\infty, 0) \cup(0,4) \cup(4, \infty)$ and $g(t)$ is continuous if $t \in(-\infty, 0) \cup(0,4) \cup(4, \infty)$. Therefore $p(t), q(t)$ and $g(t)$ are continuous if $t \in(-\infty, 0) \cup(0,4) \cup(4, \infty)$. The initial conditions are $y(3)=0$ and $y^{\prime}(3)=-1$. We have $3 \in(0,4)$. Thus the solution exists on the interval (0, 4).
6. (10 pts) (Problem 16 from Sec 3.2)

Since $y(t)=\sin \left(t^{2}\right)$, we have $y(0)=0, y^{\prime}(t)=2 t \cos \left(t^{2}\right)$ and $y^{\prime}(0)=0$, By the uniqueness of the solution of homogeneous equation, we must have $y(t)=0$. This means that $y(t)=\sin \left(t^{2}\right)$ can't be a solution of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$.
7. (15 pts) (Sec 3.2 Problem 25) Solution: Since $y_{1}(x)=x$ and $y_{2}(x)=x e^{x}$, we have $y_{1}^{\prime}(x)=1, y_{1}^{\prime \prime}(x)=0, y_{2}^{\prime}(x)=e^{x}+x e^{x}$ and $y_{2}^{\prime \prime}(x)=e^{x}+e^{x}+x e^{x}=$ $2 e^{x}+x e^{x}$. So $x^{2} y_{1}^{\prime \prime}-x(x+2) y_{1}^{\prime}+(x+2) y_{1}=0-x(x+2)+(x+2) x=0$ and $x^{2} y_{2}^{\prime \prime}-x(x+2) y_{2}^{\prime}+(x+2) y_{2}=x^{2}\left(2 e^{x}+x e^{x}\right)-x(x+2)\left(e^{x}+x e^{x}\right)+(x+2) x e^{x}=$
$2 x^{2} e^{x}+x^{3} e^{x}-x^{2} e^{x}-x^{3} e^{x}-2 x e^{x}-2 x^{2} e^{x}+x^{2} e^{x}+2 x e^{x}=0$. So y_{1} and y_{2} are solutions of $x^{2} y^{\prime \prime}-x(x+2) y^{\prime}+(x+2) y=0$. The Wronskain of y_{1} and y_{2} is $W\left(y_{1}, y_{2}\right)(x)=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=x \cdot\left(e^{x}+x e^{x}\right)-x e^{x} \cdot 1=x^{2} e^{x}>0$ if $x>0$. Hence y_{1} and y_{2} form a set of fundamental solutions.

