MATH 3860 Solution to HW 5

- **1.** (15 pts) (Problem 4 from sec 3.1) 2y''(t) 3y'(t) + y = 0. The characteristic equation of 2y''(t) - 3y'(t) + y = 0 is $2r^2 - 3r + 1 = (2r - 1)(r - 1) = 0$. We have $r = \frac{1}{2}$ or r = 1. Thus the general solution is $y(t) = c_1 e^{\frac{1}{2}t} + c_2 e^t$.
- 2. (15 pts) (Problem 10 from sec 3.1) The characteristic equation of y''(t) + 4y'(t) + 3y(t) = 0 is $r^2 + 4r + 3 = (r+1)(r+3) = 0$. We have r = -1or r = -3. Thus the general solution is $y(t) = c_1 e^{-t} + c_2 e^{-3t}$. Computing y'(t), we get $y'(t) = -c_1 e^{-t} - 3c_2 e^{-3t}$ Using y(0) = 2 and y'(0) = -1, we have $c_1e^0 + c_2e^0 = 2$ and $-c_1e^0 - 3c_2e^0 = -1$, i.e $c_1 + c_2 = 2$ and $-c_1 - 3c_2 = -1$. We have $c_1 = \frac{5}{2}$ and $c_2 = -\frac{1}{2}$. So $y(t) = \frac{5}{2}e^{-t} - \frac{1}{2}e^{-3t}$.
- 3. (15 pts) (Problem 21 from sec 3.1) The characteristic equation of y''(t) - y'(t) - 2y(t) = 0 is $r^2 - r - 2 = (r+1)(r-2) = 0$. We have r = -1or r = 2. Thus the general solution is $y(t) = c_1 e^{-t} + c_2 e^{2t}$. Computing y'(t), we get $y'(t) = -c_1e^{-t} + 2c_2e^{2t}$

Using $y(0) = \alpha$ and y'(0) = 2, we have

 $c_1e^0 + c_2e^0 = \alpha$ and $-c_1e^0 + 2c_2e^0 = 2$, i.e $c_1 + c_2 = \alpha$ and $-c_1 + 2c_2 = 2$. We have $c_1 = \frac{2\alpha-2}{3}$ and $c_2 = \frac{\alpha+2}{3}$. So $y(t) = \frac{2\alpha-2}{3}e^{-t} + \frac{\alpha+2}{3}e^{2t}$. Since $\lim_{t\to\infty} e^{-t} = 0$ and $\lim_{t\to\infty} e^{2t} = \infty$, the solution $y(t) = \frac{2\alpha-2}{3}e^{-t} + \frac{\alpha+2}{3}e^{2t}$ approaches 0 only if $\frac{\alpha+2}{3} = 0$, i.e $\alpha = -2$.

4. (15 pts) (Problem 24 from sec 3.1) The characteristic equation of $y''(t) + (3 - \alpha)y'(t) - 2(\alpha - 1)y(t) = 0$ is $r^2 + (3 - \alpha)r - 2(\alpha - 1) = (r - \alpha + \alpha)r - 2(\alpha - 1) = (r - \alpha)r - 2(\alpha - 1) = (r - \alpha)r - 2(\alpha - 1)r - 2(\alpha$ 1(r+2) = 0. We have $r = \alpha - 1$ or r = -2. Thus the general solution is $y(t) = c_1 e^{(\alpha-1)t} + c_2 e^{-2t}$. If $\alpha < 1$, then $\lim_{t\to\infty} y(t) = 0$.

Since $\lim_{t\to\infty} e^{-2t} = 0$, there is no α such that y(t) is unbounded.

- **5.** (15 pts) (Problem 9 from Sec 3.2) Rewrite the equation t(t-4)y''(t) + 3ty'(t) + 4y(t) = 2 as $y'' + \frac{3}{t-4}y' + \frac{4}{t(t-4)}y = \frac{2}{t(t-4)}$. So $p(t) = \frac{3}{t-4}$, $q(t) = \frac{4}{t(t-4)}$ and $g(t) = \frac{2}{t(t-4)}$. Hence p(t) is continuous if $t \in (-\infty, 4) \cup (4, \infty)$, q(t)is continuous if $t \in (-\infty, 0) \cup (0, 4) \cup (4, \infty)$ and g(t) is continuous if $t \in (-\infty, 0) \cup (0, 4) \cup (4, \infty)$. Therefore p(t), q(t) and q(t) are continuous if $t \in (-\infty, 0) \cup (0, 4) \cup (4, \infty)$. The initial conditions are y(3) = 0 and y'(3) = -1. We have $3 \in (0, 4)$. Thus the solution exists on the interval (0, 4).
- **6.** (10 pts) (Problem 16 from Sec 3.2)

Since $y(t) = \sin(t^2)$, we have y(0) = 0, $y'(t) = 2t\cos(t^2)$ and y'(0) = 0, By the uniqueness of the solution of homogeneous equation, we must have y(t) = 0. This means that $y(t) = \sin(t^2)$ can't be a solution of y'' + p(t)y' + q(t)y = 0.

7. (15 pts) (Sec 3.2 Problem 25) Solution: Since $y_1(x) = x$ and $y_2(x) = xe^x$, we have $y'_1(x) = 1$, $y''_1(x) = 0$, $y'_2(x) = e^x + xe^x$ and $y''_2(x) = e^x + e^x + xe^x = e^x$ $2e^{x} + xe^{x}$. So $x^{2}y_{1}'' - x(x+2)y_{1} + (x+2)y_{1} = 0 - x(x+2) + (x+2)x = 0$ and $x^{2}y_{2}'' - x(x+2)y_{2}' + (x+2)y_{2} = x^{2}(2e^{x} + xe^{x}) - x(x+2)(e^{x} + xe^{x}) + (x+2)xe^{x} = x^{2}(2e^{x} + xe^{x}) - x(x+2)(e^{x} + xe^{x}) + (x+2)xe^{x} = x^{2}(2e^{x} + xe^{x}) - x(x+2)(e^{x} + xe^{x}) + (x+2)xe^{x} = x^{2}(2e^{x} + xe^{x}) - x(x+2)(e^{x} + xe^{x}) + (x+2)xe^{x} = x^{2}(2e^{x} + xe^{x}) - x(x+2)(e^{x} + xe^{x}) + (x+2)xe^{x} = x^{2}(2e^{x} + xe^{x}) - x(x+2)(e^{x} + xe^{x}) + (x+2)xe^{x} = x^{2}(2e^{x} + xe^{x}) - x(x+2)(e^{x} + xe^{x}) + (x+2)xe^{x} = x^{2}(2e^{x} + xe^{x}) + (x+2)(e^{x} + xe$

MATH 3860: page 1 of 2

 $2x^2e^x + x^3e^x - x^2e^x - x^3e^x - 2xe^x - 2x^2e^x + x^2e^x + 2xe^x = 0$. So y_1 and y_2 are solutions of $x^2y'' - x(x+2)y' + (x+2)y = 0$. The Wronskain of y_1 and y_2 is $W(y_1, y_2)(x) = y_1y'_2 - y_2y'_1 = x \cdot (e^x + xe^x) - xe^x \cdot 1 = x^2e^x > 0$ if x > 0. Hence y_1 and y_2 form a set of fundamental solutions.